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Manufacture of porous metallic glass using dissolvable templates
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ABSTRACT A facile, precise, and controllable manufactur-
ing technology is desired for hierarchical functional surfaces.
In this work, we successfully manufactured porous metallic
glass using a water-dissolution material as template and the
excellent thermoplastic property of metallic glass. The pre-
pared micro/nanostructures have excellent tunability, and the
proposed approach can be used to prepare large-area dis-
ordered porous structures and ordered regular arrays with
nanoscale replication accuracy. In particular, the disordered
porous structure prepared by the dissolvable template strategy
exhibits a water contact angle of ~140° and an oil contact angle
of ~0°, making it suitable for oil/water separation. It also
shows stable wettability after being soaked in strong acid or
alkali environments andmaintains a ~130° water contact angle
and a ~4° oil contact angle even after severe wear. The pro-
posed strategy also possesses excellent recycling properties.
We reconstructed porous structures on the same surface three
times and found no significant change in wettability for each
reconstructed porous structure. Our research provides a facile
and controllable approach for the preparation of hierarchical
porous structures and paves the way for the design of other
functional surfaces.
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INTRODUCTION
Improving the utilization rate of material space contributes to
the development of new materials with unique properties. Por-
ous materials have recently attracted attention due to their
characteristics, such as large specific surface area, high specific
strength, and abundant active sites. Porous materials such as
zeolites [1,2], porous organic polymers [3,4], and metal-organic
frameworks [5,6] have been reported and are widely used in
sensors [7,8], electromagnetic shielding [9,10], catalysis [11–13],
and other fields. Various methods, mainly including soft or hard
templating methods and template-free methods, have been
developed to form porous materials. The pore size of porous
materials prepared by template methods is easy to regulate due
to the regular arrays and patterns of the template. However, the
removal of the template is tedious and not environmentally
friendly, thus hindering scaled-up production [14,15]. The

template-free method is a simple process and has great advan-
tages in the preparation of large-area porous materials; however,
it faces the problem of high cost [16,17]. Therefore, convenient
and low-cost synthesis methods must be explored for the pre-
paration of porous materials. Metallic glasses (MGs), i.e.,
amorphous alloys, have been extensively studied for structural
and functional applications since their discovery because of their
excellent properties [18–26]. Different from conventional
metallic materials, MGs can be processed similarly to plastic
when heated to a certain temperature range due to their unique
disordered atomic structure. Owing to this feature, the advanced
processing technology of MG thermoplastic forming (TPF) has
been explored. To date, many micro/nanostructures have been
achieved through TPF, such as nanowires [27,28], precision
gratings [29,30], and precision microfluid [31]. However, the
formation of hierarchical porous MGs is rarely reported due to
the lack of templates and the difficulty of the preparation by
other processes. The existing preparation methods for porous
structure on MGs [32,33] mainly include dealloying [34,35],
one-pot pulse anodization [36], pitting [37], foaming [38,39],
infiltration [40,41], and space holders [42,43]. However, deal-
loying, one-pot pulse anodization, pitting, and some infiltration
methods cannot guarantee the original amorphous properties of
MGs; as a result, the unique properties of MGs cannot be
maximized. Foaming methods have several disadvantages, such
as a long preparation period and difficulty in regulation. Some
other methods are also plagued by technical and preparation
safety problems.
In this study, we propose a low-cost, controllable, envir-

onmentally friendly, and dissolvable precision template strategy
to prepare porous structures on the MG surface using salt as a
template via TPF. The template only takes ~5 min to completely
dissolve in water. A transition from irregular porous to regular
morphology can be achieved by artificially designing the salt
template shape, and the surface pore size can be regulated by
changing the size of the salt particles. The irregular porous MG
obtained by the dissolvable template strategy shows a water
contact angle (WCA) of ~140° and an oil contact angle (OCA)
close to 0°. When porous MG is exposed to a strong acid or
alkali environment, its WCA and OCA do not change sig-
nificantly and remain at 130° and 4°, respectively, even after
severe wear. In addition, the porous MG still keeps its original
amorphous structure, which allows the repeated formation of
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the porous structure and the recovery of the damaged porous
structure. Our study offers a new strategy for the high-
throughput preparation of porous structure on MG surface and
extends the application of MG functional surface in various
fields.

EXPERIMENTAL SECTION

Raw materials
Pt57.5Cu14.7Ni5.3P22.5 (Pt-based MG) was selected as a model
material due to its excellent thermal stability and TPF ability
(Fig. S1) [27]. Pt57.5Cu14.7Ni5.3P22.5 alloy ingots with nominal
composition were prepared by melting Pt, Cu, Ni, and P
(>99.9% purity). The alloy ingots were then transformed into Pt-
based MG bars with a diameter of 5 mm by copper-mold suction
casting. The prepared Pt-based MG bars were cut into 1–2 mm
thick Pt-MG plates and polished on both sides for use to facil-
itate TPF.

Preparation of NaCl templates
The original NaCl solids were purchased from Sinopharm
Chemical Reagent Co., Ltd. The purchased NaCl particles were
placed in a grinding bowl for grinding, and NaCl was screened
out after grinding. Internal ~150 and ~110 μm sieves were used
to screen ~150 and ~110 μm NaCl powders, respectively, which
were then dried and used as templates during TPF.
The ~3 μm NaCl template was prepared through recrystalli-

zation. A sufficient amount of original NaCl solids were dis-
solved in distilled water to form a saturated solution, which was
slowly dropped into 1000 mL of analytical reagent ethanol under
vigorous stirring (1500 r min−1). The NaCl particles slowly
recrystallized and precipitated. The precipitate was then col-
lected by filtration, washed with ethanol (10 mL × 2), and then
dried under reduced pressure to prepare NaCl particles with a
size of ~3 μm.
The arrays with uniform circles, squares, and triangles were

fabricated using a picosecond laser on polished NaCl crystal
sheets.

Dissolvable template strategy
The porous structure was prepared from salt particles as a
template. The polished Pt-MG plate and the NaCl particles were
stacked in a designed mold with a through-hole of 5.5 mm in the
center. The mold was then placed in a vacuum heating chamber.
When the chamber was in a high vacuum environment (3 ×
10−3 Pa), the entire chamber was heated at a rate of 30 K min−1.
After the temperature rose to ~540 K, the MG in the mold was
applied with a pressure of 210 MPa for 10 s at a loading rate of
0.05 mm s−1 using the indenter (Fig. S2). The sample was taken
out of the chamber and then placed in distilled water to remove
the salt template on the porous MG.
MGs with regular arrays on the surface were also formed by

hot pressing at the temperature of ~540 K and the pressure of
30 MPa with a loading rate of 0.05 mm s−1. When the tem-
perature was cooled down to room temperature, the samples
were placed in distilled water for dissolution. The specific
experimental parameters for the preparation of MG with regular
arrays are listed in Table S1.

Multiscale structural characterization
X-ray diffraction (XRD; Rigaku MiniFlex 600) with Cu-Kα

radiation was used to ascertain the amorphous properties of the
original Pt-based MG and porous MG. Differential scanning
calorimetry (DSC; Perkin-Elmer DSC-8000) at a heating rate of
20 K min−1 was used to detect the glass transition temperature
(Tg) and crystallization temperature (Tx) of the original Pt-based
MG and supercooled liquid region (SLR). An FEI Quanta 450
FEG scanning electron microscopy (SEM) instrument was used
to characterize the surface morphologies of the porous MG.
JEM-2100F transmission electron microscopy (TEM) with
energy dispersive spectroscopy (EDS) was applied to examine
the atomic structure and elemental distributions of porous MG.
A computer tomography system (CT; YXLON FF35 and Sanying
precision instruments-nano Voxel3000d, China) was used to
scan the three-dimensional (3D) topography of the porous
structure and analyze the pore volume. A laser scanning con-
focal microscope (VK-X250K, Keyence, Japan) was employed to
visualize the microstructure parts. A droplet shape analyzer
(DSA100S, Krüss, Germany) with a 1 μL volume of water dro-
plets was used to measure the CA of the microstructure surface.
An electronic balance (Sartorius Quintix35-1CN, measurement
accuracy 0.01 mg) was applied to measure the weight of the
samples.

RESULTS AND DISCUSSION

Characterization of the porous MG
Fig. 1a schematically shows the quick preparation of porous
MGs. The salt template is stacked to the MG. Pressure is applied
when the temperature is in the SLR of the Pt-based MG, fol-
lowed by its placement in water for dissolution. The dissolution
of the porous MG in water is displayed in Fig. 1b (Movie S1
records the dissolution process). In this clear dissolution process,
the salt template on the surface is completely dissolved in a short
time within 5 min. All these findings show that the porous MG
obtained by the dissolvable template strategy has the advantage
of easy preparation and demolding. Fig. 1c depicts the porous
MG surface micromorphology. Large and small pores cover the
MG surface, resulting in a hierarchical porous structure. The 3D
porous morphology is presented in Fig. 1d (Fig. S3), and the
corresponding pore volume size was characterized in Fig. 1e.
The volume distribution of various colors can be seen in the
volume map, further demonstrating that the surface is a com-
posite of many different pore sizes. The characteristics and
atomic structures of the prepared porous structures were also
examined. Fig. 1f reveals the high-resolution TEM (HRTEM)
image of the porous structure. The disordered atomic structure
indicates that the porous structure still has an amorphous nat-
ure, which is also confirmed by the diffraction rings in the inset.
Fig. 1g displays the low-resolution TEM image and elemental
mapping results of the porous structure. Elements Pt, Cu, Ni,
and P are homogeneously distributed on the porous structure.
The state inside the salt templates before and after TPF was
observed to investigate the mechanism of forming porous
structures during TPF. The gaps between the salt particles were
observed prior to TPF (Fig. S4). When the MG is still in the SLR,
its excellent flowability allows it to fill these gaps to form the
nanowalls. Meanwhile, the individual salt particles are partially
coated by the MG to form the corresponding large porous
structure. The small holes in the nanowalls are formed by the
close contact between salt particles, making it impossible for the
MG to fill these areas. The details of the forming mechanism can
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be found in Supporting Note S1.

Dissolvable template strategy for designing porous MG
morphology
A major challenge is to develop advanced materials whose
structural size and shape can be artificially regulated. The dis-
solvable template strategy shows remarkable advantages in this
regard, because it allows the simple regulation of the size and
shape of the structure. Fig. 2a–c show the morphologies of the
irregular porous structure obtained using three different particle
sizes of salt particles, and the corresponding magnified images
can be found in the insets. The size of the porous structure can
be regulated using different sizes of salt particles, and the 3D
morphology of the porous structures (Fig. 2d–f) further indi-
cates the tunability of the porous structure. In addition, the size
distribution of the irregular porous structure was determined by
SEM images (Fig. S5), and the average pore size matches the size
of the salt particles used. The application of salt as a template

enables the fabrication of irregular and regular structures. Ben-
efiting from the easy processing of the salt material, three dif-
ferent microstructures of square, triangle, and circle have been
designed on the salt surface. Fig. 2j, n, and r show the square,
triangular, and circular arrays of microstructures on the salt
template surface, and the individual shape templates can be
found in the insets. The neat structure is arranged on the salt
template surface. When these salt templates are used for TPF,
the large-area structure can be replicated on the MG surface
(Fig. 2g–i). The morphology changes of the salt template surface
and the MG surface after employing the dissolvable template
strategy were compared to further investigate the microstructure
formed on the MG surface. Fig. 2k, o, and s show the square,
triangular, and circular array structures replicated on the MG
using salt templates of different shape sizes, and the corre-
sponding single shape structures are presented in the insets. The
3D structures of squares, triangles, and circles on the MG surface
were observed (Fig. S6). A comparison of the size of the salt

Figure 1 Characterizations of the porous MG. (a) Schematic of the porous MG fabrication; (b) dissolution of the porous MG in water; (c) SEM image of the
porous MG; (d) CT image of the porous MG; (e) cell volume distribution of the porous MG; (f) HRTEM image of the porous MG (the inset is an electron
diffraction image of the selected region); (g) element distribution of the porous MG by EDS.
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template structure and that of the microstructure replicated on
the MG reveals that the maximum replication accuracy error is
only 2% (Table S2). The use of salt pits as templates can suc-
cessfully replicate their corresponding structures on the MG.

The bottom of the salt template exhibits numerous nanoscale
salt particles during processing (Fig. 2l, p, and t), and this
structure is also perfectly replicated during TPF and forms an
irregular porous structure (Fig. 2m, q, and u). This finding

Figure 2 Dissolvable template strategy for designing porous MG morphology. (a) Porous morphology obtained using salt particles with a particle size of
~150, (b) ~110, and (c) ~3 μm (the inset is the partial magnification image); (d) 3D porous morphology obtained using salt particles with a particle size of
~150, (e) ~110, and (f) ~3 μm; images of the MG with (g) square array, (h) triangular array, and (i) circular array; (j, n, r) SEM images of the square, triangular,
and circlular salt templates (the insets are the respective salt template images); (k, o, s) SEM images of the MG with square, triangular and circle arrays (the
insets are the respective single pattern images); (l, p, t) bottom magnifications of the square, triangular, and circle salt templates; (m, q, u) top magnifications of
the MG with square, triangular and circle arrays.
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indicates that MG can replicate micro/nanoscale precision
structures.
Given that the MG flow in SLR behaves as a Newtonian fluid,

Hagen-Poiseuille Equation (1) can be used to describe the MG
forming behavior [27].

P Lv d= 32 / , (1)2

where P is the pressure, η is the viscosity, L and d are the length
and diameter through a channel, respectively, and v represents
the velocity.
Equation (1) is only applicable for cylindrical channels and

still has limitations for channels with complex shapes. In this
regard, the equivalent diameter (de) is introduced to make the
equation suitable for various shapes of channels [27] as follows:

P l td= 32 / , (2)2
e
2

where de is the equivalent diameter of the channel, and t is the
filling time.
According to Equation (2), combined with the parameters set

during the experiment (Table S1), the calculated Ptheory of the
formed regular array structure is in good agreement with the
Pactual in the experiment.
Some templates used in previous TPF and their properties are

summarized (Table S3) [27,30,44–51]. Compared with the pre-
vious templates, NaCl templates have advantages such as low-
cost, recyclability, and environmentally friendly release. Mean-
while, NaCl can be used as a template to prepare regular arrays
of patterns and irregular porous structures on MG, and the
replication accuracy of the prepared structures can be extended
to nanoscale.

Wettability of the porous MG
The porous structure on the MG surface could lead to many
excellent functional properties, one of which is wettability.
Fig. 3a, b display the dynamic CA performance of the porous
MG. The WCA shows excellent hydrophobic characteristics of
~140° after being stable, and the OCA shows lipophilic char-
acteristics close to 0° (Movie S2 records the process of wettability
change). Compared with the ~70° WCA and ~10° OCA of the
original smooth Pt-MG plate (Fig. S7), the introduced porous
structure has changed the wettability of the surface. Wenzel and
Cassie models can be used to describe the changes in wettability
induced by micro/nanostructures. The Wenzel model considers
that the structure introduced on the surface provides a space for
filling the liquid so that the wettability of the surface is enhanced
[52]. The corresponding Equation (3) of this model is as follows:

rcos * = cos , (3)y

where θ* represents the OCA of the porous MG, r shows the
roughness factor, and θy is the OCA of a smooth surface.
This equation explains that the original lipophilicity of the Pt-

MG plate is enhanced by the porous MG surface. The Cassie
model is a description of wettability transformation. It assumes
that when water drops on a surface with a microstructure, the air
becomes trapped in the microstructure and changes the CA [53].
Given that the surface of the porous MG is composed of
micropores and nanowalls, Equation (4) provided by this model
can be used to explain the WCA change of the porous structure:

( )fcos * = 1 + cos + 1 , (4)
LS y

where θ* is the WCA of the porous MG, fLS represents the

geometrical area fraction of the solid–liquid interface, and θy is
the WCA of a smooth surface [53].
Given the excellent lipophilicity and hydrophobicity of the

porous MG, oil/water separation experiments were carried out
(Fig. 3c and Movie S3). After a drop of oil falls on the surface of
distilled water after Sudan Red B dyeing, porous MG can absorb
the oil droplets from the water surface in a short time without
removing the water. This feature facilitates the extended appli-
cation of the porous MG in the field of decontamination. In
addition, the wettability of porous MG surfaces under severe
conditions was also investigated. Fig. 3d, h exhibit the surface
morphology of the porous MG after being immersed in
1 mol L−1 HCl and KOH for 5 days, respectively, and the mass
change of the porous MG during this period is summarized in
Fig. 3e, i. The porous structure of the surface is the same as that
of the original porous MG after being exposed to a severe
environment under SEM, and the masses tested at regular
intervals are similar to the initial masses. Fig. 3f, g, and j, k
present the wettability of the porous MG surface after exposure
to strong acid and strong alkali, respectively. The WCA and
OCA show a striking agreement with those of the original
porous MG. These results indicate that the prepared porous MG
is an advanced material with excellent chemical stability.
Mechanical stability is a key parameter for practical functional
applications [54]. Hence, the mechanical durability of porous
MG surfaces was evaluated. The prepared porous MG was
placed on 2000 mesh sandpaper and worn back and forth at
35 kPa 10 times (Fig. S8), after which the structure and wett-
ability of the surface were characterized. Fig. 3l, m show the
surface morphology of the porous MG before and after wear.
The upper morphology of the porous structure has been worn
away, and the lower porous structure is still retained. Fig. 3n, o
depict the wettability of the porous MG after wear. The WCA is
slightly altered after wear but still maintains the hydrophobic
properties of ~130°. Meanwhile, the OCA does not change sig-
nificantly. This mechanical stability allows the use of the porous
MG in severe environments.

Reconstruction of the porous MG
Structural damage during service will lead to the failure of the
entire workpiece; hence, the reusability of materials must be
improved. The reconstruction ability of the porous MG with
functional properties was evaluated. Fig. 4a shows the diagram
of reconstructing porous MG. When the structural properties of
the material surface are changed or damaged, the entire porous
structure on the MG surface is erased, and the porous structure
is prepared again by the same TPF process. The porous structure
is constructed three times on the same MG through this cycle,
and the XRD pattern of the material after each reconstruction is
shown in Fig. 4b. The original porous MG and the reconstructed
samples exhibit typical amorphous peaks. In addition, the weight
loss per erasure was recorded during reconstitution and sum-
marized in Fig. 4c. The erased weights are 0.016 and 0.019 g for
the second and third cycles of the porous structure, respectively,
indicating that the weight loss during erasure is smaller than the
initial weight. This finding also demonstrates the high reusability
of the porous material. Fig. 4d shows the surface morphology of
the porous MG after the first cycle, and the magnified image is
also inserted. The WCA and OCA of the porous MG after the
first cycle are shown in Fig. 4e, f, respectively. The porous
structure is then erased and reconstructed, and the surface

SCIENCE CHINA Materials ARTICLES

5© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022



morphology of the reconstructed structure is shown in Fig. 4g.
The obtained surface morphology is similar to that in the first

cycle, and the second constructed surface exhibits the same
wettability as the first cycle (Fig. 4h, i). The porous MG is

Figure 3 Wettability of the porous MG. (a) WCA of the porous MG at 1, 5, and 15 s; (b) OCA of the porous MG at 1, 4, and 10 s; (c) oil/water separation
experiment; (d) morphology of the porous MG immersed in HCl (1 mol L−1) after 120 h; (e) weight change of the porous MG immersed in HCl; (f) WCA of
the porous MG after being immersed in HCl; (g) OCA of the porous MG after being immersed in HCl; (h) morphology of the porous MG immersing in KOH
(1 mol L−1) after 120 h; (i) weight change of the porous MG immersed in KOH; (j) WCA of the porous MG after being immersed in KOH; (k) OCA of the
porous MG after being immersed in KOH; (l) morphology of the porous MG before wear; (m) morphology of the porous MG after wear; (n) WCA of the
porous MG after wear; (o) OCA of the porous MG after wear.
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reconstructed for the third time using the same approach. Fig. 4j
shows the SEM image of the surface morphology of the third
construction, and the corresponding wettability was also tested.
The WCA is ~140° and the OCA is ~0°, indicating that the
reconstructed surface maintains high repeatability in perfor-
mance and surface morphology. Our process demonstrates that
porous MGs can be readily reconstructed even when the func-
tional surface is destroyed, assuming that the environment has
sufficient space for material use.

CONCLUSION
We successfully fabricated irregular porous structures and reg-
ular array structures on MG using a new dissolvable template
strategy. The porous MG has excellent hydrophobicity and
lipophilicity due to its unique porous structure and maintains
excellent wettability even after being exposed to harsh envir-
onments. In addition, the porous structure can be reconstructed
on the same MG due to the amorphous nature of this material.

Our approach provides a new and universal route to fabricate
porous structures for a wide range of applications in energy
transportation and catalysis.
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溶解制造多孔金属玻璃
傅佳男1,李真2,刘泽航1,李信1,温文馨1,孙飞1,李路遥1,黄金标1,
阮文清1, 任帅1, 张振轩1, 梁雄1, 马将1*

摘要 简单、精密、可控的制造技术在功能表面中具有广阔的应用前
景. 在这项工作中, 我们通过使用食盐这种水溶性材料作为模板, 利用
金属玻璃优异的热塑成型性能, 成功地实现了多孔金属玻璃的溶解制
造. 通过这种溶解制造方法制备的微/纳米结构具有良好的可调控性,
不仅可以制备大面积多孔结构, 还可以制备具有纳米级复制精度的有
序规则阵列. 其中, 通过可溶性模板策略制备的无序多孔结构具有约
140°的水滴接触角和接近于0°的油滴接触角, 可用于油水分离, 并且在
强酸和强碱的环境中浸泡后表现出稳定的润湿性. 即使在严重磨损后,
带有多孔结构的表面仍可保持约130°的水滴接触角和约4°的油滴接触
角. 此外, 该策略显示出优异的可重复使用性能. 通过在同一个金属玻
璃表面上重构三次多孔结构, 发现每次重构的多孔结构的润湿性没有
显著变化. 本文的研究成果为制备多级孔结构及功能表面提供了一种
简便可控的方法.
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