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Machine learning atomic dynamics to unfold the origin of plasticity in
metallic glasses: From thermo- to acousto-plastic flow
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Yong Yang3,6 and Jun Shen1,2*

ABSTRACT Metallic glasses (MGs) have an amorphous
atomic arrangement, but their structure and dynamics in the
nanoscale are not homogeneous. Numerous studies have
confirmed that the static and dynamic heterogeneities of MGs
are vital for their deformation mechanism. The “defects” in
MGs are envisaged to be structurally loosely packed and dy-
namically active to external stimuli. To date, no definite
structure-property relationship has been established to iden-
tify liquid-like “defects” in MGs. In this paper, we proposed a
machine-learned “defects” from atomic trajectories rather
than static structural signatures. We analyzed the atomic
motion behavior at different temperatures via a k-nearest
neighbors machine learning model, and quantified the dy-
namics of individual atoms as the machine-learned tempera-
ture. Applying this new temperature-like parameter to MGs
under stress-induced flow, we can recognize which atoms re-
spond like “liquids” to the applied loads. The evolution of
liquid-like regions reveals the dynamic origin of plasticity
(thermo- and acousto-plasticity) of MGs and the correlation
between stress-induced heterogeneity and local environment
around atoms, providing new insights into thermo- and
acousto-plastic forming.

Keywords: metallic glass, plasticity, machine learning, molecular
dynamics simulation

INTRODUCTION
Since the first fabrication in 1960, metallic glasses (MGs) have
blossomed into a revolutionary new class of functional materials
with a combination of outstanding properties, such as high
strength, large elastic limit, and soft magnetism, which place
MGs among the most actively studied glasses and alloys [1–4].
The macroscopic properties of MGs are usually homogeneous
and isotropic because MGs exhibit an amorphous structure
without the long-range translational symmetry [5]. By contrast,
MGs have structural and dynamic heterogeneity in the nano-
scale and possess a short-range to medium-range order [5].
Extensive experimental and computational studies [1,3,6–8]

emphasized that nanoscale heterogeneity is crucial to unfold the
mechanisms of deformation, crystallization, and relaxation
behaviors of MGs.
Unlike the purely structural defects (e.g., dislocations) in

crystals, several nanometer-sized local regions in MGs serve as
“defects,” which are susceptible to external stimuli (such as
temperature, applied quasi-static and cyclic dynamic loads) and
often termed liquid-like regions [9] or flow units [10]. On these
liquid-like sites, the activated atoms rearrange the configuration,
taking responsibility for structural relaxation or plastic events in
MGs. The isolated atomic rearrangement corresponds to β
relaxation and the local shear transformation [9,11]. The per-
colation of liquid-like regions throughout the system signifies α
relaxation and overall stress-induced plastic flows [12–14]. The
recent discovery of fast β’ relaxation is associated with the
localized atomic shuffling involving fewer atoms [15–17]. From
the perspective of potential energy landscape, both the complex
structural relaxation and the deformation mechanism of MGs
can be depicted as stress-augmented thermal activation pro-
cesses with different energy barriers [13,18–21]. According to
the cooperative shear model [13,22], temperature and applied
stresses play equivalent roles in altering energy barriers, differing
only in the manner of scaling or biasing. Assuming the barrier
hopping event to be a stochastic process instead of a determi-
nistic process, the stochastic shear transformation model [23]
can elucidate the creep (cold flow) mechanism of MGs from the
activation and accumulation of liquid-like regions. In addition
to cold flow, the recent studies reported that ultrasonic-vibra-
tion-induced plasticity (acousto-plastic flow) enables fast cold
joining of MGs and fabrication of hybrid MGs [24,25]. The fast
surface dynamics and cyclic-loading-induced liquefaction are
possibly attributed to the enhanced atomic mobility at liquid-
like sites, which is activated by external driving frequency
approaching intrinsic relaxation frequency.
Over the past decades, considerable efforts have been exerted

to identify liquid-like “defects” in MGs. The one who believed
the existence of a priori structure of “defects” attempted to
determine liquid-like regions only from the static structural
signature. Such purely structural descriptors include free volume
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[26], bond orientational order (BOO) parameters [27,28], local
structural entropy [29], tetrahedral-packed irregularity [30,31],
Voronoi polyhedron [2,32], and various Voronoi-polyhedral
derivatives, such as local fivefold symmetry [33], geometrical
unfavored motif (GUM) [34], bond length deviation [35], and
Qk parameter [36]. These short-range order descriptors succeed
in characterizing structural heterogeneity, but they cannot pro-
vide adequate information to account for property variation. In
addition, the combination of local atomic packing with the
thermodynamic or dynamic information formed an extended
notion of structural indicators, such as soft mode [37,38], local
thermal energy [39], vibrational mean squared displacement
(vMSD) [40,41], and diverse vMSD-based parameters, such as
directionally vMSD [42] and flexibility volume [43]. These
indicators partly reveal the dynamic heterogeneity in MGs, but
whether a one-to-one correspondence exists between the struc-
ture and property of liquid-like regions in MGs remains unclear
and open for discussion.
The expression of liquid-like atomic sites literally implies the

active atomic motion at high “temperatures”. A question natu-
rally arises as to how “hot” liquid-like regions behave, which
inspired us to design a temperature-like parameter for quanti-
fying the mobility of atoms and further for recognizing liquid-
like atoms (LAs) in response to external stimuli. To map a given
temperature to mobility of individual atoms, we expected
machine learning (ML) to be a promising technique. In view of
the successful applications of ML to the evaluation of glass-
forming ability [44–48], pioneering work has been conducted on
machine-learned “defects,” such as softness [49], quench-in
softness [50], structural flexibility [51], atomic-scale stiffness
[52], integrated glassy defect [53], etc. [54–56]. However, these
machine-learned indicators either only involve local structural
signatures but neglect dynamic information, or fail to apply to
high-stressed or high-temperature systems.
This paper aimed to identify liquid-like “defects” in MGs from

the viewpoint of atomic dynamics. A temperature-like parameter
TML was proposed from the k-nearest neighbors (kNN) ML
model to evaluate the mobility of individual atoms. Applying
TML to the MG samples undergoing thermo- and acousto-plastic
deformation, we quantitatively understood the dynamic origin
of plasticity of MGs from the evolution of high-TML liquid-like
regions, which also reveal the correlation with the structural and
chemical characteristics.

COMPUTATIONAL METHODS

Classical MD simulation
The MD simulations were carried out using the large-scale
atomic/molecular massively parallel simulator. The model
Cu50Zr50 system contained 50,000 atoms and had the dimension
of ~10 nm × 10 nm × 10 nm, and it was subjected to periodic
boundary conditions for all three dimensions. The atomic
interactions were described by the embedded atom method
potential [57]. To obtain a glassy state, we initially melted the
model at 2000 K, equilibrated it for 500 ps, and subsequently
quenched it to different temperatures (from 100 to 1700 K) at a
cooling rate of 1011 K s−1. The whole process was in the iso-
thermal-isobaric ensemble controlled at specified temperature
and zero pressure by the Nosé-Hoover thermostat and barostat.
Determined by the volume-temperature curve in Supple-

mentary information Fig. S1, the glass transition temperature Tg

is 685 K, which is higher than the experimental measurement
(670 K) [58], due to the cooling rate effect. The yield strengths
were obtained from the tensile simulations, which were per-
formed at a constant strain rate of 0.0017 ps−1 (corresponding to
the loading rate of ~0.1 MPa fs−1). To simulate creep, a series of
uniaxial compressive stresses along the z direction were applied
to the model MGs at the stress rate of 0.1 MPa fs−1 and held for
470 ps at T = 100, 200, and 300 K. The results of creep simu-
lation can be found in Supplementary information. To mimic
acousto-plastic flows, we exerted a sinusoidal stress on MG
samples causing a tensile-compressive deformation at 100 K,
with the stress amplitude σ0 = 1.6 GPa and driving frequency f =
2.0 × 1010, 5.0 × 1010, and 1.0 × 1011 s−1.

Machine learning
A kNN model was established to correlate temperature and
atomic mobility. Temperatures (from T = 100 to 1700 K) were
initially applied to the class label candidates in this multiclass
classifier, and the logarithms of square displacements scaled by
temperatures ( )r Tlg /2 at different time intervals Δt (from 0.01
to 200 ps) were chosen as the feature candidates of atomic
mobility. The reason for the expression of atomic mobility was
elucidated in the DISCUSSION section. To eliminate redundant
temperature classes and improve the predictive accuracy, the
temperature classes difficult to be distinguished should be ruled
out. By using the agglomerative hierarchical clustering algorithm
(see Supplementary information), seven representative classes,
namely, T = 100, 700, 800, 900, 1000, 1200, and 1700 K were
selected. To filter unnecessary features, the features in a short
time (Δt ≤ 0.1 ps) were removed on the basis of the ReliefF
method (see Supplementary information). The dataset for
training and testing consisted of the MD simulation results at
different temperatures. Each atom corresponds to an instance.
The atomic motion behavior was predicted by the kNN algo-
rithm and 10-fold cross-validation method, in which the
hyperparameters and data preprocessing were specified in Sup-
plementary information. The ML was implemented by
MATLAB R2020a.

RESULTS

kNN model performance and machine-learned temperature
The training set consisted of the molecular dynamics (MD)
simulation results of the Cu50Zr50 MG samples at different
temperatures. Each atom corresponds to an instance. In our
kNN multiclass classifier, temperatures are the class labels, and
atomic mobility characteristics are the ML features. To predict
which class (i.e., temperature) an individual atom belongs to, the
kNN model compared the features of the test atom with every
instance in the training set and found out 50 nearest neighbors,
representing 50 closest atoms in atomic dynamics. The machine-
learned temperature TML of the atom is defined as the average of
temperature labels of these nearest neighbors. Here, we must
clarify that “the temperature of an atom” is a class label,
denoting the applied temperature of the system which the atom
probably belongs to.
Fig. 1 reveals a generally linear relation of the predicted

temperatures to the actual values, proving that the kNN model is
able to accurately describe the atomic motion in response to
thermal agitation. The overestimation of Tactual = 100 K resulted
from misclassification of several instances to high-T classes,
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whereas the underestimation of Tactual = 700 and 1700 K was
caused by the opposite situation.
Different from the actual temperature, TML is a temperature-

like descriptor about atomic dynamics, referring to the motion
behavior of individual atoms under thermal stimulus. A high
TML, e.g., 1000 K, denotes that the atom is very mobile, and the
atomic motion behaves like “a hot atom” at T = 1000 K.
Therefore, we can designate the atoms with TML > Tg or TML < Tg
as the LAs or solid-like atoms (SAs). It is worth noting that LAs
and SAs are defined from dynamic characteristics rather than
structural signatures. Hence, LAs and SAs do not have to cor-
respond to a specific static local structure, different from pre-
vious structural parameters.

Machine-learned temperature of the MGs during creep
In view of the success of TML in characterizing the atomic
dynamics under thermal stimulus, a creative application of TML
is to make predictions for the atoms in an MG sample under-
going mechanical stimulus, such as creep (also called cold flow,
which can be viewed as a thermoplastic flow). As the cases in
point, the probability density distributions of TML with the
applied stresses of σh = 2.2 and 2.3 GPa at T = 100 K are plotted

in Fig. 2a, b. And the results of other simulation conditions can
be seen in Fig. S2. Firstly, there is an evident stress-induced
heterogeneity in both conditions. At σh = 2.2 GPa, the TML is
distributed in a wide range with two maxima. One maximum is
observed at ~270 K, corresponding to the thermal contribution,
which is consistent with the prediction in Fig. 1, and the other
one is noted at ~790 K, undoubtedly resulting from the quasi-
statically mechanical input. TML quantitatively measures the
extra atomic motion stemming from the mechanical agitations.
At σh = 2.3 GPa, the non-Gaussian distribution reveals the
stress-induced dynamic heterogeneity, which suggests the exis-
tence of multiple characteristic TML in the sample. In contrast to
the TML distributions of σh = 2.2 GPa, the maximum at low TML
vanishes but the high-TML one develops. This finding indicates
that the stress has dominated the overall behavior of atomic
dynamics. It is interesting to observe more LAs with TML > Tg
when the applied stress increases, which echoes the viewpoint
that plastic deformation is a stress-induced glass transition
[14,59]. Because thermal and mechanical agitations play similar
roles in changing the energy state and amorphous structure of
MGs [14,19,22], the MG samples will flow under incessantly
high stress, though the temperature is far below Tg [14].
Secondly, the TML distribution evolves in different manners as

the applied stress varies. Unlike the unstressed MGs, in which
energy is conserved, the stressed MGs do not have the time
translation symmetry. Therefore, the TML distribution, as well as
MSD [17], will evolve as the start time changes. For σh = 2.2 GPa,
the high-TML maximum slightly diminishes and then stabilizes,
in line with the variation in strain rate (Fig. S3). This temporal
evolution manner indicates the dominance of temperature. At a
temperature far below Tg, such quasi-statically mechanical sti-
mulus is too feeble to provide a sufficient cumulative probability
for the irreversible transitions to reach the critical value within
the time window, agreeing with the stochastic shear transfor-
mation model. However, for σh = 2.3 GPa, the maximum near Tg
continuously builds up during the primary and secondary creep
stages, and this finding is associated with the increasing number
of the SAs turning into the LAs. Subsequently, the distribution
shifts toward the high TML over time, especially after the accu-
mulative strain exceeds yield strain εy, i.e., t > 100 ps. This
evolution behavior confirms that applying high stresses enhan-
ces the atomic mobility and promotes the irreversible barrier
hopping events. Under high stresses, the number of local
yielding events will reach the percolation limit and ultimately
trigger the overall plastic flow.

Figure 1 Predicted vs. actual temperatures.

Figure 2 TML distributions at 100 K with the applied stresses of (a) σh = 2.2 GPa; and (b) 2.3 GPa. Tg is represented by the dashed line.
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Thirdly, TML denotes the atomic-scale spatial dynamic het-
erogeneity. As visualized in Fig. 3a–e, the MGs of σh = 2.2 GPa
always display the pronounced spatial heterogeneity in TML. The
LAs actively respond to the thermal and mechanical stimuli, but
they are transient. Hence the localized liquid-like regions do not
settle but fluctuate frequently. On the contrary, as illustrated in
Fig. 3f–j, the high-stressed MGs possess a reduced spatial het-
erogeneity. The sufficiently high stress activates an increased
number of LAs and facilitates the connection of the localized
liquid-like regions within the finite observation time. The
improved atomic mobility of the system is prone to produce the
stress-induced plastic flow. Similar to the stress effect, the
temperature rise also attenuates dynamic heterogeneity [60], in
accordance with our findings that the stress-induced dynamic
heterogeneity weakens with the increase in TML.

Machine-learned temperature of the MGs during acoustic forming
Different from creep, acoustic forming can initiate plastic flows
at low stresses and low temperatures but high frequency [24,25].
To uncover the atomistic mechanism of acousto-plastic flows of
MGs, we simulated different loading frequencies and calculated
TML. Under applied sinusoidal stress (with σ0 < σy), the strain
oscillated accordingly. The quasistatic and low-frequency cyclic
loading (f = 2.0 × 1010 and 5.0 × 1010 Hz) showed a stable strain
oscillation with constant strain amplitude ε0 (Fig. 4a). In sharp
contrast, the enhanced driving frequency (f = 1.0 × 1011 Hz)
expedites the increase in stain amplitude. In initial cycles (e.g.,
~300 ps), the deformation of MG sample was caused by visco-
elasticity [7], in line with the strain under quasistatic loading. In
the following cycles (e.g., 300–800 ps), the evident acousto-
softening occurred and led to the gradual increase in ε0, indi-

Figure 3 Snapshots of MG slices with the thickness of 3.85 Å in a fixed position. The atoms are colored by TML. (a–e) Maps of T = 100 K, σh = 2.2 GPa, and
t = 0, 40, 80, 120, 160 ps, respectively. All the maps share the same color scale. (f–j) Results of σh = 2.3 GPa.
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cating an enhanced viscous response possibly from the increased
number of LAs. When ε0 approached εy, the deformation of MGs
became instable, and ε0 steeply climbed. Finally, the frequency-
dependent acousto-plastic flow occurred. The temporal evolu-
tion of TML distribution (Fig. 4b) shows the continuous rise in
high-TML fraction during the acoustic deformation, signifying an
increased number of LAs activated by acoustic agitations. From
the TML maps in Fig. 4c–h, the isolated liquid-like regions
explain the initially viscoelastic response. The continuous
acoustic agitation triggers the growth and interconnection of
liquid-like regions and results in acousto-plastic flow.

Machine-learned temperature and local plastic rearrangement
To unveil the correlation between the atomic dynamics and local
plastic deformation (see Supplementary information), we com-

puted the correlation coefficients ρ between TML and non-affine
squared displacement Dmin

2 , von Mises strain ηMises, and rotation
angle θ, by ρA,B = cov(A,B)/(σAσB), where A and B indicate the
quantity, cov(A,B) is the covariance, and σ is the standard
deviation. As shown in Fig. 5a–c, the positive ρ signals that the
local plastic deformation is associated with the high-TML mobile
LAs, whereas the low-TML immobile SAs prefer moving in an
affine manner [61]. Meanwhile, the increasing ρ between TML
and the local plastic rearrangement parameters over time
demonstrates the closer correlation between the LAs and local
plasticity. From the maps of TML, Dmin

2 , ηMises, and θ in Fig. 5d–p
and Figs S4–S6, the high-TML liquid-like regions gradually
expand and connect. In these regions, the LAs undergo the
increasingly irreversible transformations combined with the

Figure 4 Results of acoustic deformation. (a) Strain variations under cyclic and quasistatic loadings with σ0 or σ = 1.6 GPa at 100 K. The driving frequencies
are 1.0 × 1011, 5.0 × 1010, and 2.0 × 1010 Hz, respectively. (b) Evolution of TML distribution during the cyclic loading. (c–h) TML maps of a slice with 3.85 Å in
thickness at different time points. All the maps share the same color bar. The dashed circles and lines denote the development and interconnection of two
liquid-like regions.
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Figure 5 Correlation coefficients between TML and (a) von Mises strain, (b) non-affine squared displacement, and (c) rotation angle. These plots display the
data of various holding stresses σh and start time t. The x-axes are the time interval from the start time. (d) TML map of σh = 2.2 GPa, and t = 80 ps; (e–h) von
Mises strain maps with different Δt; (i–l) the non-affine squared displacement maps; (m–p) the rotation angle maps.

ARTICLES SCIENCE CHINA Materials

6 © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022



severely collective rotation of atoms [17,62]. Therefore, the
atomic-scale mechanism of creep deformation is the thermally
activated diffusive motion of individual atoms combined with
the stress-induced collective atomic rearrangement.

Machine-learned temperature and local structural characteristics
Because TML is obtained without relying on any structural fea-
tures, it is intriguing to investigate whether TML correlates with
structural features, including the Voronoi indices, the degree of
local fivefold symmetry (d5), and the BOO parameters (q6 and
w6) whose definitions can be seen in Supplementary informa-
tion. Here, we regarded 10% of the atoms with the highest or
lowest TML as the most LAs or the most SAs, respectively. The
column graphs in Fig. 6a, b statistically display the population of
the top ten polyhedra types in the SAs and LAs, respectively.
Interestingly, the two commonest cluster types of <0,2,8,1>and
<0,2,8,2> are abundant in both SAs and LAs, which means that
these two Cu-centered clusters [63] do not have the apparent
bias to be solid-like or liquid-like [64]. However, arriving at a
conclusion only on the grounds of population is inadequate, and
it is necessary to introduce new parameters to quantify the
propensity for atomic mobility. Accordingly, we proposed a
parameter ΔfLA or SA, as defined by the following:

f
f f

f= × 100%, (1)
LA or SA

LA or SA total

total

where ΔfLA or SA is the fraction from the LAs or SAs, and ftotal is
the fraction from the whole sample. A positive Δf

LA or SA
repre-

sents the local fraction above average and signifies the LA- or
SA-favored structure, whereas a negative value denotes the
opposite.
As illustrated in Fig. 6a, the Voronoi type of <0,0,12,0>, cor-

responding to the full icosahedron, has the highest ΔfSA of 64%
and is thus the most favored local structure in the SAs. Fol-
lowing icosahedra, the SA-favored cluster types <0,2,8,5> and
<0,1,10,4> with ΔfSA = 30% and 29% also exhibit a highly local
fivefold symmetry, with d5 = 53% and 67%. By contrast, the most
LA-favored clusters, such as <0,4,4,3> and <0,4,4,4>, present an
inferior fivefold symmetry, only having d5 = 36% and 33%,
respectively, as shown in Fig. 6b. This finding agrees with that
the structure of deformed MGs is similar to that of supercooled
liquids, i.e., MGs at the temperature between Tg and liquidus
[59]. According to the polytetrahedral packing model [2,61], the
SA-favored clusters roughly correspond to slightly distorted Z
clusters, with densely packed and geometrically stable config-
urations [61], whereas the LA-favored ones possibly belong to
highly distorted Z clusters, i.e., the GUMs, with more loose
packed “defects” or free volumes [63]. However, the clusters of
<0,2,8,5> and <0,4,4,3> have the same content of disclination
from Z clusters, but they are SA- and LA-favored, respectively.
Another similar situation exists on the clusters of <0,1,10,4> and
<0,3,6,2>. These findings indicate that similar static structures
may also have the vast differences in dynamics. TML can partly
correlate with local structures, and more importantly, TML
contains additional dynamic information, which can illustrate
the dynamic heterogeneity and origin of plasticity of MGs.
Among the BOO parameters, q6 and w6 are very sensitive to

identify the local symmetry [65,66]. As shown in Fig. 6c–e, the
joint probability distributions of q6 and w6 compare the local
symmetries of SAs, LAs, and total atoms. The contour of the SAs
sticks out near the icosahedron symbol, which turns out the

preference for icosahedron-like clusters, as reported in Ref. [28].
However, the contour of the LAs shrinks away from the icosa-
hedron symbol, suggesting the local fivefold symmetry-induced
inhibition of atomic mobility. The local plasticity prefers origi-
nating from the regions of less fivefold symmetric that are
mostly occupied by the high-TML LAs. In addition, the local
crystallinity can be estimated by measuring BOO parameters
s(i,j) [67] (see Supplementary information). As shown in Fig. 6f,
the majority of bonds between two nearest neighbor atoms are
disordered bonds, which have a lower s(i,j) than the critical value
of 0.7 [67]. Compared with SAs, LAs have a tendency toward
forming crystalline bonds. It is reasonable that these mobile LAs
with more crystalline bonds can easily initiate the local plastic
events.

Machine-learned temperature and local chemical environment
As shown in Fig. 7a, the most LAs consist of 57% of Cu atoms
and 43% of Zr atoms, but the proportion of Cu to Zr atoms is
47% to 53% for the most SAs, which agrees with Ref. [64].
Fig. 7b illustrates the degrees of deviation from complete che-
mical disorder (α = 0), with the favored atomic pairs indicated
by negative α and the unfavored pairs with positive α (see
Supplementary information). Clearly, the Cu-Zr pairs are more
common for the Cu-centered clusters. However, a different case
is observed for the Zr-centered clusters, whose Zr-Zr pairs
slightly outnumber the Zr-Cu pairs. This finding is due to the
preponderance of the coordination number (CN) of Zr atoms,
with the average ZZr = 13.7 larger than ZCu = 10.4. Measured by
α, the chemical short-range order shows a negligible difference
between the SAs and LAs. Distinct from the reference of α, the
complete chemical disordered state of η is expressed by
Z f Z Z Z= /A B B A B( )

* , which is obtained from maximizing the
entropy of mixing [68] and takes the unequal CN effect into
consideration. Interestingly, the results in Fig. 7c reveal sharp
contrast between the LAs and SAs. The heterogeneous Cu-Zr
pairs are not only preferred in the Cu-centered clusters as
described by α, but also prevalent in the Zr-centered clusters for
the SAs and total atoms. Note that this result is not contra-
dictory to the findings from α. The Zr-Zr pairs indeed have a
greater number than the Zr-Cu pairs, but η eliminates the
unequal CN effect and thus signals the propensity. Therefore,
the heterogeneous Zr-Cu pairs are preferred, which is consistent
with the negative enthalpy of mixing for Cu and Zr. The
abnormal propensity of the Zr-centered clusters in the LAs is
attributed to the loose-packed environment of the liquid-like
regions, which leads to a drop in ZZr from 13.7 (for total atoms)
to 11.7 (for LAs). In a word, the high-TML LAs are mainly
composed of Cu atoms, which prefer being paired with Zr
atoms. The low-TML SAs contain more Zr atoms, which also
favor the heterogeneous Zr-Cu pairs, despite the larger number
of the homogeneous Zr-Zr pairs in absolute terms.

DISCUSSION
Given the nonequilibrium nature and slow relaxation dynamics,
MGs can be viewed as the frozen liquids with extremely high
viscosity. We drew on a phenomenologically mechanical model
[69,70] to understand the microscale rheology of MGs, as illu-
strated in Fig. 8a. This model describes the combination of two
viscosity mechanisms, which conceptually matches well with the
dynamic heterogeneity in MGs, i.e., the LAs and SAs. Through
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Figure 6 Comparison of local structural characteristics of SAs and LAs. (a) Counts, fractions, and propensity parameters of the top ten Voronoi polyhedra in
the SAs. Next to the SAs, the count of each cluster type in the LAs is also plotted for comparison. (b) Results for the LAs. (c) Joint probability distributions of
BOO parameters in total atoms, (d) for the LAs, and (e) for the SAs. The perfect icosahedral (ico), face-centered cubic (fcc), body-centered cubic (bcc),
hexagonal close packing (hcp), and simple cubic (sc) structures are labeled by open circles. (f) Probability distribution of s(i,j). All the data presented in the
figure are from the steady-state creep stage, with σh = 2.3 GPa, T = 100 K, and t = 40 ps.
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solving the Langevin equation of this model, the MSD can be
derived [69,70]:

r t k T
m

e t

e t

( ) = 6 1 + 1
1

+ 1
1 ,

(2)
t

t

2 B

2 1

2 2

2 2

1 2

1 1

2

1

where kB is the Boltzmann constant, m is the average atomic
mass, τ2 = m/η2, λ1,2 are the roots of the characteristic equation
when solving the velocity autocorrelation functions,

( )m km km km= ( / 2 ) 1 + ( / ) ± ( / 1) 4 /1,2 2 1 2 1 2
2

1
2 ,

where k, η1, and η2 are the parameters from the rheological
model. As shown in the log-log plot (Fig. 8b), the MSD at dif-
ferent temperatures can be well fitted by the model. At the small
time limit (t→0), Equation (2) is simplified by

r t k T
m t( ) 32 B 2, corresponding to the free motion of atoms.

At the large time limit (t→∞), the MSD is in the diffusive mode,

and Equation (2) is approximated by r t k T
ma t( ) 62 B , where a

is a constant associated with k, η1, and η2. For low-T glassy
samples, there is a plateau of MSD in between, which is related
to the caging effect. The plateau is near the level

r t k T
mb( ) 62 B , where b is a constant only tied to k [52,71,72].

From this model, the dynamic behavior of MGs can be char-
acterized and understood by MSD, which is the reason why we
applied squared displacements as the features for training the
ML model. According to Equation (2), the MSD is proportional
to T, and thus the curves will collapse as the data are scaled by T
(see Fig. S7), which enables us to compare atomic motion
behaviors regardless of the applied temperature, agreeing with
our data preprocessing during ML. When the sample is under
stress, such as 2.2 GPa, the caging regime becomes ephemeral,
and the diffusion regime moves ahead, as shown in Fig. 8b. If the
MSD is scaled by T, then it will behave like the MGs with ele-
vated T, but it is “heated” up by the mechanical agitations. In
this study, we only collected the data from one MG composition,
but the model implies that our ML model is also valid to other
alloy systems as long as the data are scaled by the elastic con-
stant.

CONCLUSIONS
In summary, a temperature-like parameter TML has been pro-
posed by the kNN ML model, to characterize the atomic
dynamics in response to thermal, quasistatic and cyclic
mechanical stimuli. Particularly, free from static local structures,
TML identifies the LAs in MGs from atomic dynamics and
quantitatively measures how active (“hot”) a LA is. Determined
by TML, LAs bridge the fast dynamics with local plasticity, less
fivefold symmetric structure, and chemical preference. TML
successfully reveals the dynamic origin of plasticity of MGs,
including thermoplastic and acousto-plastic flow. The micro-
scopic rheology model illustrates the relationship between the
dynamics of MGs and MSD, which suggests the validity of our
parameter for other glassy systems.
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机器学习原子运动揭示金属玻璃塑性起源: 从热塑性
到超声塑性
刘晓俤1,2, 赫全锋3, 卢文飞4, 周子清3, 田锦森1, 梁丹丹5, 马将1,
杨勇3,6, 沈军1,2*

摘要 金属玻璃具有无序的原子排列, 但其结构与动力学并非各处均
匀. 许多研究证实金属玻璃的结构与动态不均匀性对于其塑性机制至
关重要. 金属玻璃的“缺陷”被视为结构上疏松排布、动力学上积极响
应外界刺激的区域. 但迄今仍未建立明确的结构-性能关系来甄别金属
玻璃中的类液缺陷. 本文中, 我们基于模拟原子运动轨迹并结合机器学
习提出了一种不依赖于静态结构特征的缺陷. 利用k近邻机器学习模型
分析并预测了不同温度下的原子运动行为, 建立了温度类标签-原子运
动特征映射关系. 应用这个“机器学习温度”参数理解金属玻璃在应力
下的塑性流, 识别类液区原子. 类液区的演化揭示了金属玻璃塑性的动
态起源(包括热塑性和超声塑性), 展示了应力诱发的非均匀性和原子局
域环境的关联, 为热塑性成型和超声加工提供了新见解.
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