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Nano-amorphous—crystalline dual-phase design of AlgoLisMgsZnsCus

multicomponent alloy
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ABSTRACT  The design of metallic materials with high
strength, high ductility, and high thermal stability has always
been a long-sought goal for the materials science community.
However, the trade-off between strength and ductility remains
a challenge. Here, we proposed a new strategy to design and
fabricate bulk amorphous-crystalline dual-phase superior al-
loys out of the AlgLisMgs;Zn;Cus multicomponent alloy. The
nano-amorphous phase revealed unexpected thermal stability
during fabrication and mechanical testing above the crystal-
lization temperature. The true fracture strength of the
AlgoLisMgsZnsCus nano-amorphous-crystal dual-phase mul-
ticomponent alloy was increased from 528 to 657 MPa, and the
true strain was increased from 18% to 48%. In addition, the
alloy yielded a strength 1.5 times higher than that of the
commonly used high-strength aluminum alloys at 250°C. This
strategy provided a new approach and concept for the design
of high-performance alloys to ensure strength-plasticity bal-
ance.

Keywords: amorphous alloys, nanocrystalline alloys, multi-
component alloy, high-performance alloys

INTRODUCTION

Materials with high strength, great ductility, and high-tem-
perature resistance are ideal for reliability engineering, extreme
environmental applications, and energy efficiency [1,2]. How-
ever, most metallurgical methods that are used to increase
strength often lead to a decrease in ductility because of a trade-
off effect between strength and ductility [3-5]. The introduction
of second-phase intermetallic compounds (IMCs) is an effective
method to improve the strength and high-temperature resis-
tance of alloys [6-8]. However, most IMCs with crystalline
structures are inherently brittle, and the inhomogeneity of the
microstructure of IMCs under stress loading can easily cause
local stress-strain concentration, resulting in microcracks and
catastrophic fracture [9]. The refinement of grains to nano/
ultrafine grain systems can result in materials with high strength
and ductility at ambient temperatures [10-12], but high-tem-
perature properties caused by the introduction of a large number
of nonequilibrium defects, such as grain boundaries, often make
the material unstable. This trade-off is symbolic in nanocrys-
talline and amorphous alloys [13-15]. By contrast, the intro-

duction of a nano-amorphous phase has high strength and
ductility because of the high compressive strength exhibited by
the amorphous size of less than 100 nm [11,12,16,17], and the
shear banding phenomenon can be completely suppressed,
thereby exhibiting flow behavior in deformation and thermal
stability [18,19]. The currently reported nano-amorphous-
crystalline dual-phase design has achieved strength—plasticity
balance through partial crystallization by annealing amorphous
elements [17], prenucleation by adding high-melting-point ele-
ments (e.g., tantalum or niobium) followed by rapid quenching
[12,20], and embedding of nanocrystals into amorphous aggre-
gates by magnetron sputtering [16]. However, the methods
currently used often are limited to the traditional classical
composition systems with high glass-forming capacity.

In this work, we report a new strategy for the nano-amor-
phous—-crystalline dual-phase design in the multicomponent
alloy (NDMA). Based on the time-temperature-transformation
(TTT) curves of classical solidification [21-23], nano-amor-
phous—-crystalline  dual-phase  AlgLisMgsZnsCus  multi-
component alloy with improved strength-plasticity and
unrestricted dimensions can be obtained in the non-classical
amorphous composition system. In addition, based on the
excellent thermal stability of the amorphous phase, the AlgoLis-
MgsZn;Cus NDMA exhibits a yield strength of 430 + 15 MPa,
which is 1.5 times higher than that of commonly used high-
strength aluminum alloys at 250°C. Our design strategy provides
a basis for the wide application of multicomponent alloys and
new ideas for the design of new amorphous composites.

EXPERIMENTAL SECTION

Preparation of ND ribbons

The AlgLisMgsZnsCus (atomic percent, at%) multicomponent
alloy was produced from elements with a purity of 99.99% in
weight percent by vacuum-induction melting. Using AlgoLis-
MgsZn;sCus as a prealloyed material in an argon atmosphere and
common induction melting and single-roll melt-spinning tech-
nology (v = 60 m s™'), the width is approximately 2-4 mm, and
the thickness is approximately 20-40 pum.

Powder metallurgy molding NDMA
AlgLisMgsZnsCus NDMA was produced by hot pressing at
400 MPa and 370°C. The powder used was obtained from
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quenched ribbons after 50 h of ball milling. The powders were
first placed in the mold and prepressurized with 1 kN. When the
mold temperature reached 100°C, the pressure was increased to
25 kN, and this pressure value continued until the end of hot
pressing. When the temperature in the mold cavity reached
370°C, hot pressing was performed in isothermal mode with a
dwell time of 3 min. At the end of hot pressing, the sample was
purged with argon gas and removed from the cavity. The
laboratory was evacuated to approximately 1 x 107 Pa prior to
hot pressing to minimize the risk of oxygen contamination
during hot pressing.

Compression test

Compression tests were performed on a mechanical testing
machine (Zwick-Roell z050tew). AlgLisMgsZnsCus NDMA and
the as-received samples were 6 mm high and 3 mm in diameter.
The specimens were processed using a slow-walker cut, and then
the upper and lower surfaces were polished with 1000-grit
sandpaper. The strain rate for the compression work was
107 s7*. During compression, the strain was recorded by a video
extensometer. High-temperature compression was performed in
a blast chamber, and the temperature of the chamber was
measured using a K-type thermocouple. Before the test, the
environmental chamber was preheated. When it reached the
specified temperature, the compressed sample was placed in the
chamber for 5 min. The strength and ductility reported in this
paper were the average results of four compression tests.

Transmission electron microscopy

Microstructural and phase analyses were performed using a
transmission electron microscope (TEM, FEI Titan Themis)
equipped with an energy-dispersive spectroscope (EDS). The
entropic alloy samples for TEM observation were prepared on a
Dual Beam System (FEI Scios). Specimens for TEM observation
were prepared on a double-beam system (FEI Scios), which were
all obtained from randomly selected areas. TEM in situ heating
experiments were performed on a two-sphere differential Cs-
corrected TEM (JEM-ARMS300F). The in situ heating rate was
50°C min~!, and heating was temporarily stopped after each
50°C increase to allow shooting, and shooting was continued
until the temperature reached 450°C.

Electron backscatter diffraction (EBSD)

The microstructural evolution in the deformation area of the
samples was characterized by EBSD, using the TESCAN MAIA3
scanning electron microscope, equipped with an HKL-EBSD
system. The samples were prepared by ion-beam polishing for
1 h at 6.5 kV. The EBSD characterizations were operated with a
step size of 0.5-2 um at 20 kV.

X-ray diffraction (XRD)

Phase identification was determined by XRD using the Rigaku
miniflex 600 XRD instrument and Cu Ka radiation with a
wavelength of 0.154 nm. The XRD pattern was acquired in a 26
range of 20°-90° at a scan rate of 4° per minute and a scanning
interval of 0.02°.

Density measurement

The weight of the specimen was measured in the air using an
electronic balance (Sartorius Quintix35-1CN, measurement
accuracy 0.01 mg) and was marked as W1. Afterward, the weight

of the sample in analytically pure alcohol was measured and
marked as W2. The density (p) of the specimen could be cal-
culated using the formula p = W1 x pl/(W1-W2), where the
density of the analytically pure alcohol is 0.790 g mL™. The
density of the as-received is 2.87 g cm™, and AlgLisMgsZnsCus
NDMA is 2.89 g cm ™. Density measurements were repeated five
times for each specimen to obtain reliable results.

RESULTS AND DISCUSSION

Design concept

The strategic approach is based on the confusion principle of
amorphous alloy formation [24], the multicomponent effect of
multicomponent alloys [25,26], and the TTT curve of the clas-
sical solidification theory (Supplementary information and
Fig. S1) [21,22]. In a single-roller melt-spinning process with a
spinning speed (v) of 60-65 m s™* (speeds greater than 65 m s™*
have not been attempted because of experimental conditions),
the AlgLisMgsZns;Cus multicomponent alloy can obtain a nano
dual-phase structure. Fig. S2 illustrates the distribution of the
nano dual phase. Subsequently, the quenched ribbons were ball-
milled into powders, and then the powder was metallurgically
molded to obtain large AlgLisMgsZnsCus NDMA using the
design route shown in Fig. la. Fig. 1b shows the changes of
AlgLisMgsZnsCus grain in the design route: pristine grains,
grain refinement, and recrystallization, and the element dis-
tribution of AlgLisMgsZnsCus NDMA is shown in Fig. S3.
Notably, the NDMA is dominated by the dislocation slip gen-
erated by the nano dual-phase of the Al-rich (NDA) region
during deformation (Fig. S4). Therefore, we primarily focus on
the deformation mechanism of the NDA structure. In addition,
the Al-poor phase regions are labeled as IMCs.

The result of EBSD further demonstrates grain refinement
(Fig. 1c). In addition, the analysis of four samples produced by
the process route in Fig. la using XRD (Fig. 1d) indicates the
absence of phase transformation during fabrication. Moreover,
Fig. le shows high-resolution TEM (HRTEM) images of the as-
received and NDMA samples in the Al-enriched region, indi-
cating their (left) transformation to NDA (right) after the pro-
cess route of Fig. 1a. Powder metallurgy was used to obtain large
sizes; thus, AlgLisMgs;ZnsCus NDMA can reach the size lim-
itation and achieve large blocks. As shown in Fig. 1f, using the
quenched ribbons and powder metallurgy method, a large bulk
of A130L15Mgszn5CU5 NDMA was formed.

Stability of nano-amorphous—crystalline dual-phase

TEM in situ heating experiments provide direct evidence that
the NDA in AlgLisMgsZnsCus is stable at high temperatures.
The results are presented in Fig. 2a and Fig. S5. For easier
observation, light green is used to cover the crystal phase. The
disordered structure in NDA remains stable from 25°C to even
400°C, which is higher than the powder metallurgy temperature
of 370°C in our design route. That is, the AlsLisMgsZnsCus
NDMA maintains the NDA structure even after powder
metallurgy. Notably, the amorphous region was based on the Al
content, the crystallization temperature of which should be less
than 400°C. However, we did not find the crystallization phe-
nomena in the in situ TEM observation, indicating the good
stability of the amorphous phase. However, when the tempera-
ture increases to above 450°C, crystallization occurs in the
amorphous region, and fast Fourier transform (FFT) on the

2 © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
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Figure 1 NDMA alloy design strategy route and characterization. (a) NDMA manufacturing diagram; (b) from left to right, the TEM images of the as-
received, quenched ribbons, and NDMA; (c) EBSD plot showing the grain structure of the as-received (left) and NDMA (right); (d) XRD images of the as-
received, ribbons, powders, and NDMA from manufacturing in (a); (¢) HRTEM images of the fcc structure within the a-Al phase of the as-received (left) and
NDA of NDMA (right); (f) quenched ribbons (left) and a large bulk of AlgLisMgsZnsCus NDMA (right) from the manufacturing in (a).

right side no longer shows amorphous diffraction rings. The
original fcc phase of AlgLisMgsZnsCus has 94.1% Al element
and only 1.4% Cu [27,28]. In addition, the Al content is sig-
nificantly reduced in some regions in the nano dual-phase of the
NDA region of AlgLisMgsZnsCus (Fig. 2b). On the contrary, the
Cu content is about 7.1%, and it increases significantly in some

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022

regions (Fig. 2b, element diagram black shear head), reaching
about 22%. Locating the region using HRTEM (Fig. 2b), the Cu
content increases to the amorphous phase region, which is more
than ten times the 1.4% Cu content of the fcc phase of the as-
received sample. This result indicates the presence of Cu with a
high melting point, resulting in the amorphous phase and
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Figure 2 NDA microstructure and thermal stability. (a) In situ TEM heating experiments. NDA structures of AlgLisMgsZns;Cus NDMA collected during
individual heating at 100, 200, 300, 350, 400, and 450°C were imaged under TEM at high resolution. The insets for 100 and 450°C show the FFT results for the
corresponding regions, where the left FFT shown at 100°C corresponds to the left fcc, and the right FFT corresponds to the right amorphous. The scale bar is
0.5 nm (see Fig. S5 for the specific location of this region). (b) The HRTEM image of the NDA structure (top): the green coverage area is fcc nanocrystals, and
the EDS results of the area surrounded by white wireframe are shown below. (c) The NDA structure is shown for the quenched strips, powder and powder
metallurgically formed bulk in the strategic route (Fig. 1a), and NDMA after compression fracture. The FFT in the lower right corner corresponds to the fcc

phase structure in the corresponding region.

obtaining high thermal stability. Moreover, the thermal stability
of the NDA was further ascertained by the TEM observation of
samples at different stages in the strategic route of Fig. 1la. The
results are presented in Fig. 2c. The ribbons, powders, bulk
sample formed by powder metallurgy, and the fractured speci-
men after compression kept similar NAD structures, which were
generated by single-roll melt spinning.

Mechanical properties

The presence of the nano dual-phase achieves a significant
strength—ductility combination and maintains high yield
strength at high temperatures. The true stress-strain curve
under compression (Fig. 3a) shows that AlgLisMgsZnsCus
NDMA has a fracture strength of 657 + 12 MPa (engineering
stress and strain are shown in Fig. S6). However, this trend is not

4 © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
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Figure 3 Mechanical properties of AlgLisMgsZnsCus NDMA compared with other alloys. (a) Compression of true stress—strain curves for AlgLisMgsZnsCus
NDMA (red) and as-received samples (gray), each with a diameter of 3 mm and a height of 6 mm; (b) comparison of true ultimate strength strain of
AlgoLisMgsZnsCus NDMA using the compression test results of the as-received, and common aluminum alloys. (c) Engineering stress-strain curve of
AlgoLisMgsZnsCus NDMA at 250°C, with sample diameter of 3 mm and height of 6 mm. (d) Comparison between yield strength and temperature for

AlgoLisMgsZnsCus NDMA and other industrial high-strength aluminum alloys.

due to the plastic-forming ability. On the contrary, the true
plastic strain of AlgLisMgsZnsCus NDMA increases from
18.34% =+ 1.80% in the as-received state to 48.26% =+ 2.10% in the
AlgoLisMgsZn;Cus NDMA, with a 2.5-fold increase in plasticity.
The increase in strong plasticity at room temperature results
from the unique hybrid enhancement mechanism. AlgLisMgs-
Zn;Cus NDMA has a significant advantage over other Al alloys
in the normal trade-off between true ultimate strength strain
(Fig. 3b) [29-33]. However, the excellent thermal stability of
NDA allows NDMA to retain its high strength at high tem-
peratures. Fig. 3c shows the compression engineering stress—
strain curve for NDMA at 250°C. The yield strength is 430 +
15 MPa, which is 1.5 times higher than that of industrial high-
strength aluminum alloys (Fig. 3d) [34-39]. This result is con-
sistent with the previously described results of thermal stabili-
zation of NDA structures.

The strength-plasticity enhancement obtained by AlgLisMgs-
ZnsCus NDMA is derived from the NDA structure and mixed
hard-soft phase strengthening. First, the increase in vyield
strength (Fig. 3a) is due to grain refinement (Fig. 1c). In general,
deformation starts from dislocation sources in adjacent grains
[40], and grain refinement leads to an increase in the total area
of grain boundaries, resulting in an increase in deformation
resistance, which is consistent with the Hall-Petch relationship

[41,42]. Based on the “soft-hard model” mechanism [20,43-45],
IMCs with MgZn, as the main component have higher strength
than the fcc in the NDA structure.

With the increase of stress applied, dislocation slip is activated
from the NDA (soft phase). TEM observation of the AlgLis-
MgsZnsCus NDMA sample after compression deformation and
fracture is shown in Fig. 4a. HRTEM image and Fig. S7 show the
region from the upper left inset surrounded by the white dashed
line. The fcc grains undergo dislocation deformation at the
amorphous—crystalline junction (Fig. 4b, c). The upper and
lower insets on the right side of Fig. 4a respectively show the
FFT patterns of the #1 and #2 regions (surrounded by the white
dashed square in Fig. 4a) in the two nanograins. The one-
dimensional (1D) inverse FFT images in Fig. 4b, c reveal the
planes of the #1 and #2 regions in Fig. 4a, respectively. Several
dislocations found near the boundary between nanocrystals and
non-crystals are shown, which are marked with L. In addition,
nanocrystals with rotation-dominated deformation are found
[47,48]. As shown in Fig. 4d, the nanocrystal undergoes dis-
location (red line) with rotational deformation (yellow dashed
line) [47,48].

When the size of the amorphous alloys is less than 100 nm, the
deformation mode changes from shear band propagation to
uniform flow [18,19]. In addition, as the diameter decreases, the

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 5
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Figure 4 Plastic deformation mechanism of the AlgLisMgsZnsCus NDMA. (a) HRTEM image of the deformed NAD after compression break, with the
upper and lower insets on the right corresponding to the FFT patterns in the upper and lower white boxed square regions, respectively. (b and c) 1D Fourier
filtered images of the upper and lower Fourier transformed two points (marked by red arrows) in the [46,47] plane (a). Dislocation is marked with L.
(d) HRTEM image of the area located in the white square dashed box in the left inset of (a), showing the nanocrystals (grain size of approximately 7 nm)
undergoing rotational deformation. The scale bar is 1 nm. (e) TEM image of dislocations in the NDA obstructed by IMCs. (f) Plastic deformation mechanism

of AlgLisMgsZnsCus NDMA.

initial stress of the elastoplastic transition is smaller [49].
Therefore, as the load increases, plastic flow increases and begins
to occur in the amorphous phase [49]. Moreover, the accumu-
lation of dislocations within NDA is followed by propagation,
which is blocked by the hard IMC region [20,43,44]. As shown
in Fig. 4e, the dislocations in the NDA (dark region within
NDA) are intercepted at the edges of the IMCs, whereas no
significant dislocations and deformations are observed in the
IMCs. Therefore, more dislocations and deformations can be
generated in the NDA, thereby resulting in increased plasticity.
Moreover, the increase in strength comes from the following
three aspects: (1) the refinement of grains leads to more grain
boundaries and the dislocation movement receives more
obstruction, which enhances the strength. (2) The pinning effect
of IMC causes more dislocations in the NDA, which further
makes the dislocation movement receive obstruction and
enhances the strength. (3) The plastic flow of nano-amorphous
leads to deformation hardening [19], thereby enhancing the
strength.

Fig. 4f shows the structure of the NDA and a schematic dia-

gram of the soft-hard phase reinforcement, showing that the
nanocrystals within the NDA are randomly embedded in the
amorphous regions. During plastic deformation, dislocations or
rotations generated by the nanocrystals within the NDA are
deformed, resulting in strain hardening and plasticity. With the
increase of load, nano-amorphous flows and increases plasticity
[18,19]. Moreover, the dislocations generated within the NDA
are hindered by the IMC phase (Fig. 4e), which results in more
dislocations and deformations that can be generated in the
NDA, leading to strain strengthening and increased plasticity.

CONCLUSION

We present a new strategy for designing AlgLisMgsZnsCus
nano-amorphous—-crystalline dual-phase alloy with superior
properties. The nano-amorphous phase shows good thermal
stability during fabrication and mechanical testing above the
crystallization temperature. During plastic deformation, dis-
locations, rotational deformation of nanocrystals in NDA, and
plastic flow of amorphous occur, leading to increased plasticity
and strain hardening. Moreover, the “pinning” effect of IMCs

6 © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022
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leads to more strain in NDA. Consequently, the unique structure
increases the true fracture strength of AlgLisMgsZns;Cus NDMA
from 528 to 657 MPa and the true strain from 18% to 48%. In
addition, the yield strength of AlgLisMgsZnsCus NDMA at
250°C is 1.5 times higher than that of commonly used high-
strength aluminum alloys. Therefore, this alloy is suitable for
lightweight, high-performance alloy materials in extreme
environments.
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