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Ultrasonic-assisted rapid cold welding of bulk metallic glasses
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ABSTRACT Glass-forming ability is a long-standing concern
in the field of metallic glasses (MGs), which greatly limits their
maximum casting size and extensive applications. In this
work, we report an ultrasonic-assisted rapid cold welding of
bulk MGs without using any additives. MGs with various
compositions are welded together under a 20,000-Hz high-
frequency ultrasonic vibration without losing their amor-
phous nature. The ultrasonic technology offers the advantages
of rapid bonding (< 1 s) at low temperature (near room tem-
perature) and low stress (< 1MPa). According to the phe-
nomenon observed in the experiment, the activated fresh
atoms diffuse through the broken channel port under con-
tinuous rupture of the oxide layer, and the ultrasonic vibra-
tion accelerates the atomic-diffusion process. Finally, stable
bonding of the MG interface is realized. This universal ul-
trasonic-assisted welding process can realize the composition
design of dissimilar MGs as well as tuning of new materials
with new performance.

Keywords: metallic glass, glass-forming ability, ultrasonic-
assisted welding, atomic diffusion, composition design

INTRODUCTION
Under rapid cooling after melting, the atoms of some metals
become disordered [1,2]; the thus formed materials are called
amorphous alloys or metallic glasses (MGs). This unique
structure allows MGs to possess more excellent mechanical
properties [3–8], magnetic properties [9,10], high-performance
electrocatalysis [11–14], industrial wastewater treatment ability
[15,16], and other advantages than traditional metals. Its dis-
covery can be traced back to the 1930s, when Kramer [17] first
reported amorphous-alloy films. In the 1960s, MG ribbons were
prepared [18]. Then, in the 1980s, a 1-mm-diameter MG was
realized [19]. Currently, the largest MG in the world has an 80-
mm diameter, although it is based on a noble metal [20].
Achieving the maximum size of an MG that can be cast, i.e., the
glass-forming ability (GFA), has been a core scientific problem
in this field and greatly limits the wide applications of MGs [21].
The GFA limits of Cu-based [22], Ni-based [23], and Fe-based
[24] MGs are 12, 3, and 16mm, respectively. The size of casting
MGs is often limited to a small range, and MGs with a larger size
contain non-metallic or Be elements [24–26]. To achieve a
breakthrough in the GFA of MGs, scholars have proposed var-
ious types of combination technology [27–46].

Laser welding [33], welding [28], and other methods require
melting and subsequent rapid quenching of MGs to ensure re-
formation of amorphous alloys [32]. These bonding methods
require extreme heat to melt the MGs and a rapid cooling rate to
re-solidify them. This type of liquid-phase welding suffers from
the disadvantage of insufficient cooling rate, which can lead to
partial crystallization of MGs and make the interface fragile.
Welding in a supercooled liquid region (SLR) is another
potential method of realizing an MG bulk, such as thermoplastic
forming (TPF) [37,42]. This method uses the rapid increase in
fluidity in the SLR. Atoms with reduced viscosity enter the
surface through a broken oxide layer, forming a stable connec-
tion [40]. This method requires a wide SLR. Therefore, the
optional composition is limited, and the increase in temperature
shortens the MG-crystallization relaxation time.
The introduction of ultrasound opens the door for MG cold

bonding [44–48]. To overcome the disadvantages of the pre-
viously mentioned welding process, a strategy to create bulk MG
involves the use of ultrasonic-vibration-bonding technology. In
our previous work [45], the MG has lower surface activation
energy, and the high-frequency vibration reduces the viscosity of
surface atoms by several orders of magnitude. In the present
work, atomic diffusion between two MG surfaces can be
achieved at low temperatures, low stress, and low ultrasonic
energy. The X-ray diffraction (XRD) and differential scanning
calorimetry (DSC) results show that the obtained welding
samples still maintain their amorphous nature. The morphology
of the interface, change in the oxygen content, and diffusion of
the elements confirm the bonding process of ultrasonic welding.
This ultrasonic-assisted bonding process offers a breakthrough
of the GFA of MGs, realizes composition design of dissimilar
MGs, and allows tuning of new materials with novel perfor-
mance.

EXPERIMENTAL SECTION

Sample preparation
La55Al25Ni15Cu10Co5, Pt57.5Ni14.7Cu5.3P22.5 (Pt-based MG), Zr35-
Ti30Cu8.25Be26.75 (Zr-based MG1), Zr65Cu17.5Ni10Al7.5 (Zr-based
MG2), Zr47Cu46Al7, and Pd40Ni10Cu30P20 (Pd-based MG) bulk
MGs were used in the present research. To ensure the uniform
fusion of all single metals (purity > 99wt%), the alloys were
repeatedly melted six times by arc-melting followed by drop-
casting onto a Cu mold to obtain MG rods. Then, the rods were
cut into 2-mm thickness using a low-speed diamond cutting
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machine, and the surface was polished using 400, 1000, and 2000
sandpaper. Subsequently, a high-frequency ultrasonic vibration
of 20 kHz was introduced to weld the MG, as shown in Fig. 1a.
The ultrasonic amplitude was 80% of the maximum amplitude
value, the trigger pressure was 22N, and the welding stress was
150 kPa. These parameters were controllable, and only the
welding energy was adjusted from 50 to 150 J. For the compo-
nents with low atomic activation energy, the welding energy was
correspondingly reduced. To study the gradient nanostructure
molding, different nanowire structures of the La-Pt-based MG
were fabricated at the surface by one-step TPF in SLR using an
anodized aluminum oxide (AAO) mold with half 200-nm and
half 300-nm through holes.

Characterization
Thermal images of the ultrasonic welding were captured using
an infrared imaging camera (Fotric 280d) with a macro lens.
Real-time measurement of the pressure was performed using a
self-made dynamometer, and a data-acquisition card (National
Instruments NI-9237) with a sampling frequency of 2 kHz was
used to process and transmit the data to a computer. After the
ultrasonic bonding of the MGs, their amorphous nature was
characterized using XRD (Rigaku miniflex600) with Cu-Kα
radiation at a scanning rate of 5° min−1 from 20° to 80°. The
glass-transition temperature Tg and crystallization temperature
Tx of the welded sample were confirmed by DSC (PerkinElmer

DSC8000) at a heating rate of 20K min−1. The amorphous atom
arrangement, interface microstructure, and surface element
distribution were obtained using the high angle annular dark
field (HAADF) and the selected-area electron diffraction
(SAED) images were obtained by a scanning transmission
electron microscope (TEM) with double spherical aberration
correctors (Cs-STEM). Finally, the morphology of the bonding
interface and surface nanowires was collected using a field-
emission scanning electron microscope (SEM) (FEI QUANTA
FEG 450).

RESULTS AND DISCUSSION
The ultrasonic-assisted bonding of MGs was performed at room
temperature under a 20-kHz high-frequency vibration (Fig. 1a).
The work-stress curve varied with time during the ultrasonic
welding (Fig. 1b). The entire welding time was less than 1 s, and
the welding stress was lower than 1MPa. In addition, the fluc-
tuation range of the welding stress was positively correlated with
the energy set in this study. The optical images of different types
of MG weldments (Fig. 1c) (where S1 is Pt-Pt-based MG, S2 is
Pt-La-based MG, S3 is La-La-based MG, S4 is Pd-Pd-based MG,
S5 is Zr-Zr-based MG1, and S6 is tZr-Zr-based MG2) show that
the welding sample surfaces are complete. The results demon-
strate that ultrasonic vibration could suitably bond various
matrix MGs without using any additive. The welding tempera-
ture increases with the increase in energy. Among the results, the

Figure 1 (a) Schematic of ultrasonic vibration welding. (b) Under energy values of 50 and 150 J, the welding stress of the MG changes with time. (c) Optical
image of the welding samples, namely, Pt-Pt-based MG (S1), Pt-La-based MG (S2), La-La-based MG (S3), Pd-Pd-based MG (S4), Zr-Zr-based MG1 (S5), and
Zr-Zr-based MG2 (S6). (d) Temperature change during ultrasonic welding of S5. (e) XRD patterns of S1, S2, and S3 showing their amorphous nature. (f) DSC
curves of S1, S2, and S3, which show their Tg and Tx.
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temperature change of S5 at 150-J energy demonstrates the
maximum temperature at the interface (Fig. 1d). The tempera-
ture peak is 356.8 K, which is approximately 58% of Tx and 41%
of melting temperature Tl [25]. This temperature is even lower
than the Tg (465.2 K) of the La-based MG, which requires the
smallest amount of energy. This cold-joint method ensures the
amorphous nature of MG. Theoretically, the increase in steady-
state temperature depends on loss modulus G of MGs, which can
be expressed as [48]

G v µ kT

v kT µ kT
= 2 e
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where k is the Boltzmann constant, T is the ambient tempera-
ture, ω is the angular frequency of the external agitation, ΔG is
the activation energy of the local relaxation event, v is the
attempted frequency of the local relaxation sites, µ is the non-
relaxed modulus, and βΩ is the effective activation volume of the
local stress-relaxation events.
According to Molinari and Germain [49], the temperature

change due to cyclic loading can be obtained by solving the
following heat-conduction equation:

r r r T
r G T rd

d
d
d = 3

2 [ , ( )], (2)0
2

where κ is the thermal conductivity, r is the axial distance in a
cylindrical coordinate, ε0 is the amplitude of the resulting cyclic
strain, and the right-hand side of the equation represents the
heat generated due to anelasticity. To verify that the MG did not
experience crystallization under ultrasonic vibration, the XRD
curves of S1, S2, and S3 exhibit a typical break similar to Bragg
diffraction peaks in the range of 30°–40°, whereas no Bragg
diffraction peak in the crystal is observed at other angles

(Fig. 1e). The DSC curves further verify the amorphous nature of
the MG (Fig. 1f). The Tg values of S1 and S3 are 508 and 465K,
respectively, and their Tx values are 580 and 520K, respectively.
In addition, La-Pt-based MG reveals the combination of S1 and
S3. Only slight differences in the thermal parameters exist
between the ultrasonic-welding-treated and as-cast MG samples.
The results show that the ultrasonic-assisted rapid cold welding
of MGs retains their amorphous nature.
The ultrasonic-assisted rapid cold welding of MGs supplants

the traditional hot-welding method (Fig. 2). The possible
welding processes of MGs are listed in Table 1. The welding
temperatures of these processes range from 300 to 3000K. Most
of the MG welding processes use the method of first melting and
then rapid cooling of the MG to realize the combination of two
MGs. The typical critical cooling rates (Rc) are on the order of
102–106 K s−1 [1,2,50,51]. Therefore, adapting a liquid-phase
welding to achieve an amorphous stage has become a great
challenge. When a lower cooling rate Rcryst is achieved, local and
total crystallization of MGs occur; thus, the welding interface
becomes fragile and will fracture. The temperature and time-
dependent transformation from amorphous to the crystalline
state of MGs can be characterized by a time-temperature-
transformation (TTT) curve that is shaped similar to a nose. The
other welding processes use the characteristics of viscosity
reduction in the SLR to realize MG bonding. These processes
can also achieve a stable bonding interface, but the imple-
mentation time is relatively long. On the other hand, the welded
MG components are extremely limited and usually require a
wide SLR. In contrast, ultrasonic welding of MGs is a fast and
low-temperature welding method. Thus, it consumes the lowest
energy in achieving bonding of MGs without crystallization. The
ultrasonic-assisted cold-welding technology not only avoids the
problem of rapid cooling speed required by the laser and other
liquid-phase welding processes but also overcomes the problem

Figure 2 TTT diagram. The high-temperature welding processes must match rapid cooling rate Rc to achieve a disordered atomic structure. Insufficient
cooling rate Rcryst can lead to partial crystallization of MGs and make the interface fragile. The ultrasonic vibration welding process is always at a low
temperature that is very far from the TTT curve, which effectively ensures the amorphous state of MGs.
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of long processing time in the SLR welding process such as TPF.
A gap existed at the beginning of La-La-based MG welding

(Fig. 3a). Then, the gap disappeared, and no visual interface
could be observed. This result shows that the interface could be
completely bonded to the same substrate. During the ultrasonic-
assisted bonding of MGs with different substrates such as the Pt-
La-based MG (Fig. 3b), two types of MGs with different colors
could be observed using SEM. Similarly, the welding interface
reveals a complete individual, and no visual gap occurs. Because
150-J welding energy was used in the ultrasonic-assisted welding
of the Pd-Pd-based MG (Fig. 3c), the ultrasound worked longer
and more violently vibrated; thus, some welding marks could be
observed at high magnification. In our previous study, we found
that the surface activation energy of MGs was lower than that of
the bulk [45,52]. According to the molecular dynamics (MD)
simulations of MGs under an ultrasonic vibration, the dis-
tribution of activation energy increases with different distances
away from the surface (Fig. 3d). Surface atoms are more likely to
pass through the damaged oxide layer into the matrix on the
other side than the bulk atoms. The success of MG bonding is
due to the activation and diffusion of surface atoms, and the
atomic-level dynamics was characterized by the time-dependent
mean-square displacements of particles at elapsed time t, which
is defined as

r t N r t r( ) = 1 ( ) (0) , (3)
i

N
i i

2
=1

2

where r t( )2 denotes the ensemble average. The individual
atomic dynamics of each atom was calculated as follows:

r t r t t( ) = ( + ) . (4)2
0

The atomic-scale deformation mechanism was analyzed by
visualizing nonaffine-squared displacements Dj

2 [53], which is
defined by
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The TEM graph shows the disordered arrangement of atoms
(Fig. 3e), which is an enlarged image of Fig. 3f, and the dif-
fractive halo-like SAED indicates a fully glassy feature. An
imaginary red-atom model was used to indicate the diffusion of
active atoms at the interface. The circular region was an enlarged
model of the atom. The atom was closer to the oxide layer and
required lower activation energy. After the diffused atoms
combined, the La-Pt-based MG welding interface contained no
gap (Fig. 3f). The white part in the figure is a Pt-based MG, and
the black part is a La-based MG. To investigate the elemental
distribution across the interface, an energy-dispersive spectro-
scopy (EDS) analysis was performed using TEM. Generally, the

Table 1 Bulk-bonding technology of MG

Technical Name Material Temperature (K) Time (ms)

Sparking welding [26] Zr55Al10Ni5Cu30 >1100 25

Electron-beam welding [28,29] Zr41Be23Ti14Cu12Ni10 Zr55Al10
Ni5Cu30 >1030 200–500

Nd: YAG pulse laser welding [30] Cu54Ni6Zr22Ti18 1500–2550 4–10

Selective laser melting [31] Fe74Mo4P10C7.5B2.5Si2 >Tl >0

Laser welding [32,33] Zr55Cu30Al10Ni5
Ti40Zr25Ni3Cu12Be20

1800–2300 ~500

Melting liquid Joining [34] Zr55Cu30Al10Ni5 1273 >0

Liquid-solid joining [35] Zr51Ti5Ni10Cu25Al9 Zr50.7Cu28
Ni9Al12.3 1123 and 300 40–70

Self-propagating reactions [36] Zr57Ti5Cu20Ni8Al10 1350 0.01

3D printing [37] Zr44Ti11Cu10Ni10Be25 >Tg >0

High-power fiber laser [38] Zr55Al10Ni5Cu30 ~Tx ~1

Thermoplastic deforming [39] Zr35Ti30Cu7.5Be27.5 >Tg >0

Vacuum hot pressing [40] Al75Ni10Ti10Zr5 733 1.2 × 106

Resistance upset welding [41] Zr-based MG 695.8–729.3 1300–2200

Friction welding [42] Zr41.5Ti13.8Cu12.5Ni10Be22.5
Zr50Cu40Al10

733–787 200–800

Ultrasonic AM (strips) [43] Ni82.2Cr7B3Si4.8Fe3 300 30–90

Ultrasonic-vibration bonding (ribbons) [44] La55Al25Ni5Cu10Co5 Pd40Cu30
P20Ni10 Zr35Ti30Cu8.25Be26.75 300 0–1000

Ultrasonic cold joining MG [45] La55Al25Ni15Cu10Co5 <350 0–1000

Ultrasonic-assisted welding of BMGs

Pt57.5Ni14.7Cu5.3P22.5
Zr35Ti30Cu8.25Be26.75
Zr65Cu17.5Ni10Al7.5
Pd40Ni10Cu30P20

La55Al25Ni15Cu10Co5

<357 0–1000
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element distribution exhibits a clear boundary along the inter-
face (Fig. 3g). We should note that some level of intermixing
through diffusion could also be found from the EDS results. For
instance, minor Pt and P were found in the La phase, whereas
small amounts of La, Al, and Co were also found in the Pt phase.
In this study, we need to point out that surface oxides at the
surface of metals were generally unavoidable. The diffusion of Pt
and La demonstrates an opposite relationship. The change in O
in the broken oxide channel (Fig. 3h) was similar to that in La
because La and O could easily form oxides. In addition, a rapid
increase in O could be observed at the interface hindered by the
oxide layer (Fig. 3i). Therefore, the formation of metallic
bonding across the interface of the MGs clearly indicated that
surface oxide layers, if they existed, must have been broken up
into pieces during the metal-to-metal contact under the ultra-
sound, which proved the breakage of surface oxides during cold
bonding.
The Pt-La-based MG composition was an artificial design

using ultrasonic-assisted welding technology, and the cross
section of La-Pt-based MG exhibited an undifferentiated whole
(Fig. 4b). Subsequently, one-step TPF various scale Pt-La-based
MG nanowires were obtained. In the TPF of the MGs, viscosity η
was usually approximately 106–1012 Pa s. Flow velocity v was on

the order of micrometers per second. Therefore, the following
equation shows that the filling process of MGs is a simple
laminar flow [54]:

R D= . (7)e
e

The calculation result is Re < 1. According to the Hagen-
Poiseuille flow, the relationship among the viscosity, filling time,
pressure, micropore diameter, and filling length is expressed as
follows [55]:

P L
d

L
d

L
t= 32 = 32 d

d , (8)2 2

where P is the pressure, v and η represent the velocity and
viscosity of the viscous fluid flowing in the pipeline, respectively,
and L and D are the length and diameter of the pipe, respec-
tively. Considering that the interference of the capillary force
significantly affects the nanometer-size filling process, the
magnitude of the capillary force can be expressed as [56]

f D= 4 cos , (9)
e

where γ is the vacuum interface energy of the MGs, which is
approximately 1Nm−1, and θ is the contact angle between the

Figure 3 Characterization of the welding interface by SEM and TEM. (a) Interface of La-La-based MG. The black line at the left is the starting position of
welding, and no other gap exists on the entire welding surface. (b) Interface image of the Pt-La-based MG. The welding interface can be clearly seen.
(c) Higher magnification of the interface image of the Pd-Pd-based MG. (d) Schematic drawing of atomic mobility at the MG surface. The closer MG is to the
interface, the lower is the energy required for atomic activation. (e) High-resolution TEM and SAED pattern of (inset) the Pt-La-based MG. The red spheres
are hypothetical active atomic models. (f) Low-resolution TEM image of the Pt-La-based MG. (g) Elemental maps of the Pt-La-based MG. (h, i) Distribution of
the linear elements perpendicular to the welding surface.
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viscous fluid and mold. The following equation was obtained:

P L
d

L
t D= 32 d

d
4 cos . (10)2 e

We finally obtained the following equation:

L PD D t= ( + 4 cos )
32 . (11)e e

The TPF diagram shows the MG replication structure of the
AAO mold with 200- and 300-nm pores and the dissolution of
the AAO template in the NaOH solution (Fig. 4a). In the TPF
process, the viscosity of the MGs sharply decreased with the
increase in temperature. At this time, a certain amount of stress
was applied on the MG surface to realize the molding of micro/
nanostructure. The SEM images (Fig. 4c) show the 200- and 300-
nm gradient nanowires at the Pt-La-based MG surface, which
were prepared by TPF under an applied force of 10 kN and held
for 20 s at 205°C. For many glass-forming liquids, the tem-
perature dependence of viscosity η(T) for temperature intervals
that lie between Tm and Tg can be described by the Vogel-Ful-
cher-Tamman (VFT) equation [57]:

T D T
T T( ) = exp , (12)0

*
0

0

where η0 is constant, (2.51 × 10−5 Pa s for La55Al25Ni15Cu10Co5
[58] and 4.5 × 10−5 Pa s for Pt57.5Ni14.7Cu5.3P22.5 [59]); T0 is the
VFT temperature; D* is the kinetic-fragility parameter. There-
fore, the MGs of different systems have different viscosity
coefficients, and nanostructures with different lengths and sizes
can be designed using Equation (11).
On the other hand, the ultrasonic-assisted rapid cold-welding

technology could realize additive manufacturing of multiple
MGs (Fig. 4d). The GFA of Zr47Cu46Al7 was 3mm. When the
casting size was 2mm, the XRD results revealed that it was
amorphous (Fig. 4e). In contrast, when the casting size (5mm)
was larger than the GFA, the XRD curve showed that the
material contained a very serious crystallization peak. For-
tunately, using the ultrasonic-assisted additive manufacturing
(UAM) process, five pieces of 1.5-mm MG plates were bonded
together, and the amorphous properties of the MGs were well
preserved. The ultrasonic-assisted rapid cold-bonding technol-
ogy offers a potential method for the design of bulk MGs.

Figure 4 Application scenarios of ultrasonic welding of MGs. (a) Schematic of the TPF process. The MG nanowires were prepared using an AAO template
with 200- and 300-nm pores, and the AAO template was dissolved in the NaOH solution. (b) Optical image of the welding sample, namely, La-Pt-based MG.
(c) SEM images of the nanowires at the La-Pt-based MG surface, which was prepared by TPF under an applied force of 10 kN and held for 20 s at 205°C.
(d) Optical image of multilayer Zr47Cu46Al7 MGs after ultrasonic-assisted welding. (e) XRD patterns of the as-cast MG and UAM samples. When the casting
size reaches 5mm, the MG is seriously crystallized, whereas the MG prepared by UAM does not crystallize even when the casting size reaches 7.5mm.
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CONCLUSIONS
In contrast to other welding processes, ultrasonic-assisted
bonding of MGs is a rapid (< 1 s) welding technology under low-
temperature (near room temperature) and low-stress (< 1MPa)
conditions. It effectively ensures the amorphous nature of MGs.
The MG viscosity sharply decreases at the welding interface with
the increase in the vibration frequency (from 0 to 20 kHz), and a
very high internal surface friction occurs. Driven by low energy,
the oxide layer at the MG surface is broken, and the original
atoms are exposed. These atoms are activated under the action of
ultrasonic vibration, diffuse through the broken oxide channel,
and finally form a strong bridge among MGs. By using this
technology, we can break through the GFA of MGs and realize
the combination of different types of MGs. A 7.5-mm-thick
Zr47Cu46Al7 MG and the design of artificially controlled Pt-La-
based MG composition and nanostructure were realized.
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超声辅助快速冷焊接块体金属玻璃
黄志远,傅佳男,李信,温文馨,林鸿基,娄燕,罗烽,张振轩,梁雄,
马将*

摘要 玻璃形成能力是金属玻璃领域中长期存在的问题, 它极大地限
制了金属玻璃的最大铸造尺寸和广泛应用. 在本研究中, 我们报道了超
声辅助快速冷焊接块体金属玻璃的方法. 在不需要焊料的情况下, 通过
20,000赫兹的高频振动实现了不同组分金属玻璃的结合, 并且保证了金
属玻璃的非晶态特性. 超声技术有低温低压快速焊接的优点, 其中焊接
温度接近室温, 压强小于1MPa, 焊接时间小于1 s. 根据观察到的现象,
随着金属玻璃氧化层的不断破裂, 金属玻璃被超声振动激活并通过破
裂的氧化层扩散到基体中, 同时超声振动加速了扩散的过程, 最终实现
金属玻璃界面的稳定结合. 这种普适性的超声辅助焊接工艺可以实现
金属玻璃的大块化, 以及不同组分的非晶态复合材料与新性能的设计.
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