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Rapid removal of copper from wastewater by Fe-based amorphous alloy 
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A B S T R A C T   

Fe-based amorphous alloys have been proved to exhibit excellent degradation properties for the removal of 
copper ions from simulated wastewater. Compared with crystalline iron, amorphous alloy has higher removal 
efficiency, lower reaction activation energy and high corrosion current density owing to its unique surface 
mobility. The copper ion can be reduced to less than 0.5 or 1 ppm at different initial concentrations. Even at a 
lower concentration of copper ions, it also exhibits better performance. In comparison, the concentration of the 
copper ion would be higher than the prescribed discharge standard if the wastewater was treated by crystalline 
iron. This work provides a potential application of Fe - based amorphous in the removal of heavy metal ions from 
wastewater.   

1. Introduction 

Our world is now facing many unprecedented environmental threats, 
one of which is water pollution [1–3]. Metals such as lead, cadmium, 
copper, arsenic, nickel, chromium, zinc and mercury are recognized as 
the hazardous heavy metals, resulting in damage to blood composition, 
lungs, kidneys, liver and other vital organs [2,4]. Even at low concen-
trations, the wastewaters containing these heavy metals still exhibit 
strong toxicity to human body [5,6]. In the past centuries, the 
world-wide rapid industrialization has greatly aggravated the release of 
these toxic heavy metals to water streams. At present, the discharge of 
contaminative wastewater is a common concern environmental problem 
of humankind. As the main sources of heavy metal ion contamination, 
electroplating, metal processing, printed circuit board (PCB) 
manufacturing, mining, textile and battery manufacturing industry are 
making this problem more and more serious [7,8]. 

Among the heavy metals, copper ion (Cu2þ) is a common hazardous 
pollutant in wastewater and is often released by metallurgical, plating, 
printing circuits, fertilizer and refining industries [9,10]. Though Cu2þ is 
known to be a necessary trace element [11–13],but it can accumulate in 
living organisms, causing several disorders and diseases [14–17]. Ac-
cording to the regulations of world health organization (WHO), the 
guideline value for Cu2þ in drinking-water is 2.0 mg/L [13]. However, 
the concentration of the copper ion in the industrial effluent ranges from 
tens to even thousands mg/L in different industrial fields, which is 
tremendously far higher than the regulations. Furthermore, when the 
concentration of Cu ion becomes very low, it will be very costly to 

decrease the concentration by traditional methods including electro-
chemical operations, reverse osmosis, or chemical treatment processes 
[18–22]. 

Metallic glasses, alternatively known as amorphous alloys, including 
Fe- [23–26],Mg- [27],Al- [28]and Co- [29]based amorphous alloys have 
been very interesting catalytic materials for degrading the water con-
taminants due to the intrinsic difference of their disordered atomic 
packing arrangement compared with the well-defined atomic ordering 
in crystalline materials [23,24,30–33]. In recent experiments, it was 
discovered that the surface mobility is very different from the bulk in 
amorphous matters owing to the disordered structure [34], including 
glassy polymers [35], oxide glasses [36], organic glasses [37], amor-
phous alloys [38,39] et al. Evidences showed that the surface diffusion 
was dominated by the mono-atomic layer for the crystalline solid, 
however, as for the amorphous matters, the domination layer could be as 
thick as nanometer [40,41]. Specifically, the surface diffusion rate of 
amorphous alloy is millions of times higher than the bulk when subject 
at temperature below glass transition temperature. That is to say, there 
exists a “super active” layer with high mobility on the surface of 
amorphous alloys [38]. Inspired by such fast surface mobility of amor-
phous alloy, in this work we present the rapid removal of copper ions 
from wastewater could be achieved by the Fe-based amorphous alloy 
ribbons. Furthermore, by using such method, no secondary pollution is 
caused, the resultant of reaction is pure copper, which can be collected 
and reused. Therefore, it is proved to be an efficient and cost-saving 
method to prevent the copper ion pollution in wastewater, showing 
great significance in the sense of environmental protection. 
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2. Materials and methods 

2.1. Materials and characterization 

The Fe78Si9B13 (at.%) amorphous alloy ribbons with a thickness of 
25 μm were chosen for this work. The amorphous nature of the Fe-based 
amorphous alloys were ascertained by x-ray diffraction (XRD; Rigaku 
MiniFlex600) with Cu Kα radiation and differential scanning calorim-
etry (DSC; Perkin–Elmer DSC-8000) at a heating rate of 20 K/min. The 
micro morphologies of the moulds and the punched products were 
collected on a scanning electron microscope (SEM; FEI QUANTA FEG 
450) instrument. The electrochemical tests were conducted using a CHI 
660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a 
standard three-electrode system, using a platinum plate as the counter 
electrode, and a saturated calomel electrode (SCE) as the reference 
electrode. The electrochemical measurement area was defined as 1 cm2. 

2.2. Wastewater containing Cu ion 

The simulated wastewater containing Cu ion was manually designed 
by dissolving corresponding quantities of CuSO4 in distilled water, 
preparing into different concentrations. In present research, the initial 
concentrations of Cu2þ are 500 ppm (i. e. mg/L), 200 ppm, 100 ppm, 50 
ppm and 10 ppm. The concentration of copper ions in the solution was 
determined by Inductively Coupled Plasma-Optical Emission 
Spectrometry(ICP-OES; PerkinElmer Optima2100DV). 

2.3. Experiment of the Cu ion removal 

An amount of 300 ml copper ion solution (100 ppm if not noted) was 
prepared in a beaker. The solution was stirred and mixed by a me-
chanical agitator throughout the copper removal process. The pH value 
of the treated solution was adjusted to 2 by 10% H2SO4 and 10% NaOH. 
The temperature (25 �C if not noted) of the aqueous solution containing 

copper ions was maintained using a thermostatic water bath. After that, 
0.6 g of amorphous alloy ribbons (2 g L� 1 if not noted) were added into 
the solution and the reaction time was recorded. At regular intervals, 5 
ml of the solution was removed using a pipette and filtered with a 0.45 
μm filter membrane. The concentration of copper ions in the filtrate was 
determined by the ICP-OES. 

3. Results and discussion 

3.1. Copper iron removal by amorphous alloy 

It should be noted that the Fe78Si9B13 ribbons were amorphous 
before the wastewater treatment, the XRD pattern and DSC curve were 
the evidences, which are presented in Figs. S1(a) and (c). The crystalline 
iron ribbons had a typical crystal x-ray diffraction pattern Fig. S1(b). The 
basic principle of copper ion removal can be schematically illustrated in 
Fig. 1(a). As it is shown, the amorphous alloy ribbon was immersed into 
the wastewater, after a period of time, the wastewater got clear and the 
crystal copper layer applied on the surface of the ribbon. Fig. 1(b) shows 
the color contrast before and after cooper ion removal of the wastewater. 
Obviously, the color of the wastewater changed from light green to 
colorless and transparent, indicating the copper ion removal effect. 
Fig. 1(c) presents the comparison of the original ribbon and the one after 
copper ion removal. The clear pure copper layer can be seen, and the 
inset in Fig. 1(c) shows the pure copper that was scraped from the 
amorphous alloy ribbons or collected through a simple filtration of the 
treated wastewater solution, therefore, the copper could be collected 
and reused, no follow-up treatment is needed. In addition, the copper is 
pure and without other impurities that can be demonstrated from the 
copper XRD pattern Fig. S1(d). The video in the supplementary mate-
rials (fast forward mode) compares the color change of the amorphous 
ribbon (right) and iron ribbons (left) in the solution containing Cu ion of 
500 ppm. Clearly, the copper layer coated on the amorphous ribbon in a 
short time (less than 2 min), in contrast, nearly no change can be 

Fig. 1. (a) Schematic diagram of the copper removal process. (b) The contrast of the wastewater before and after copper ion removal treatment. (c) The comparison 
of the original ribbon and the one after copper ion removal. The inset shows the pure copper that was scraped from the amorphous alloy ribbon. 
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observed for the iron. The results demonstrate that the amorphous rib-
bon has excellent Cu ion displacement ability compared with the crys-
talline alloy. This ability makes it ideal candidate for the industrial 
application in the fast and efficient removal of the Cu ion in wastewater. 

3.2. Uptake efficiency of the removal process 

To precisely analyze the concentration change in the copper removal 
reaction, we define the uptake efficiency of the copper ion as η, which 
can be calculated using the following equation: 

η¼  ½ðCo� CtÞ=Co� � 100 (1)  

where Co and Ct are the initial and the instant concentration at time t of 
copper ion in the wastewater. Fig. 2 shows the reactivity of amorphous 
alloy ribbons and crystalline iron ribbons in treating copper ionic solu-
tions with different concentrations. Comparison in Fig. 2(a) and (b) in-
dicates that the amorphous alloy has better reaction performance than 
the crystalline iron at different concentrations of copper ions. The 
amorphous alloy can remove the copper ion concentration to less than 1 
ppm at different initial concentrations of copper ions in the experimental 
time as shown in Fig. S2. These results are satisfactory with the Chinese 
integrated wastewater discharge standard for the Cu ion content of 
wasterwater (GB8978-1996).But it is a pity that crystalline iron lacks 
such excellent performance. Fig. 2(a) shows that amorphous alloys need 
more time to remove high concentrations of copper ions than low con-
centrations. When the concentration of copper ions in the solution 
increased from 10 ppm to 50 ppm, 100 ppm, 200 ppm and 500 ppm, the 
time to achieve the experimental purpose increased from 80 min to 80 
min, 100 min, 160 min and 180 min, respectively. Whereas for crys-
talline iron in Fig. 2(b), the final concentration of copper ions in the 
solution was greater than 3 ppm (as shown in Fig. S3), even in the group 
of 10 ppm for 180 min. As for the iron, it should be noted that the 

concentration of copper ions in the solution decreased at the beginning 
of the experiment and then increased. Fig. 2(c) and (d) show how the 
corresponding uptake efficiency η of the amorphous alloy and crystalline 
iron change with time. The η of amorphous alloy is 99.8% higher than 
crystalline iron 96.3% at 500 ppm of copper ionic solution, but amor-
phous alloy is 97.0%, crystalline iron 65.8% at 10 ppm. And the η in-
creases as the copper ion concentration increases. 

3.3. Reaction activation energy 

The unique copper ion removal ability in the wastewater can be 
ascribed to its more active sites originates from the intrinsic chemical 
heterogeneity on the disordered surface than the crystalline alloy. As it is 
stated above, the surface mobility of amorphous materials is very 
different from the crystalline. The surface diffusion coefficient is mil-
lions faster than the bulk which has been found in previous work [38, 
40–42]. For amorphous materials, the active atomic layer could be as 
thick as nanometer range, i. e. several atomic layers, however, such 
surface dynamics is limited to mono atomic layers for crystalline solids. 
Benefiting from this property, the reaction activation energy of amor-
phous ribbon could be much lower than the crystalline alloy in dealing 
with the wastewater. To confirm that, the thermal activation energy of 
copper ion removal using corresponding ribbons is analyzed by carrying 
out the reactions at different temperatures, as illustrated in Fig. 3. Fig. 3 
(a) and (b) show the effect of temperature on the removal of copper ions 
from the solution. Clearly, the removal process takes less time with an 
increased solution temperature. The increase of temperature intensifies 
the molecular thermal motion and promotes the electron transport of the 
reactive material, therefore, resulting in the higher removal efficiency. 
The concentration of copper ions in the solution was decreased below 1 
ppm with an amorphous alloy within 60–100 min at 298.15–328.15 K. 
However, it is clear that crystalline iron is difficult to effectively remove 
copper ions compared with the amorphous alloy. According to the ln 

Fig. 2. The copper ion concentration changes with time in the removal process using (a) Fe78Si9B13 and (b) crystalline iron at different concentrations of copper ions; 
the uptake efficiency η of the amorphous alloy (c) and crystalline iron (d) change with time. 
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(C0/Ct) vs .time curve, the process of removal reaction follows a 
first-order reaction kinetics equation, with the goodness of all linear fit 
R2 are greater than 0.998 as shown in Fig. 3(c) and (d). Fig. 3(e) sum-
marizes the reaction rate constant k at different temperatures of amor-
phous ribbon and the iron ribbon, respectively. The reaction rate 
constant of amorphous alloy increases from 0.04886min� 1 to 
0.0667min� 1,0.08349 min� 1 and 0.09833 min� 1, when the solution 
temperature increases from 298.15 K to 308.15 K, 318.15 K and 328.15 
K, while that of crystalline iron increases from 0.01338min� 1 to 
0.01945min� 1,0.02710 min� 1 and 0.03438 min� 1. It is noticed that the 
reaction rate constant of amorphous alloys is 3 times higher than 

crystalline materials, indicating the great potential of amorphous alloy 
in dealing with the wastewater containing heavy metals. 

The reaction conditions are set as follows: initial pH ¼ 2, ribbon 
dosage 2.0 g L� 1 and C0 ¼ 100 ppm. The reaction kinetics is commonly 
described by the pseudo-first-order equation as given below: 

Ct ¼C0 expð � ktÞ (2)  

where k is the reaction rate constant (min� 1), t is the reaction time 
(min), C0 is the initial concentration of copper ion (ppm), and Ct is the 
instant concentration (ppm) at time t. Therefore, the reaction rate con-
stant k can be derived as follows: 

Fig. 3. The concentration change of copper ion solution in the removal process using (a) Fe78Si9B13 and (b) crystalline iron at different temperature; the ln(C0/Ct) vs. 
time curves for (c) Fe78Si9B13 and (d) crystalline iron. (e) The reaction rate constants k at different reaction temperatures; (f) ln k vs. � 1/RT curves for Fe78Si9B13 
amorphous alloys ribbons and crystalline iron ribbons. 
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k¼ lnðC0 =CÞ=t (3) 

The thermal activation energy for the copper ion removal can be 
calculated by the Arrhenius-type equation: 

ln kT ¼ � ΔE=RT þ ln A (4)  

where kT is the reaction rate constant at different temperatures, △E is 
the reaction activation energy, R is the gas constant and A is a constant. 
Fig. 3(f) plotted ln kT vs.-1/RT and it is calculated that the reaction 
activation energies of amorphous alloy and iron ribbons are 18.95 kJ 
mol� 1 and 25.78 kJ mol� 1, respectively. Apparently, the amorphous 
alloys with low reaction activation energy have better performance than 
the iron ribbons. 

3.4. Electrochemical property 

In the reported study, the Fe - based amorphous alloy has excellent 
stability in the degradation of organic dyes. The stable service life of 
amorphous ribbons for degradation application is related to their 
corrosion resistance [23,43]. Unlike catalytic reactions, the displace-
ment reaction of copper ion is a spontaneous redox reaction. Thus, the 
corrosion properties of iron and Fe78Si9B13 amorphous ribbons in 100 
ppm copper ion solution were compared. Open circuit potential and 
polarization curves of the above ribbons are shown in Fig. 4. After 30 
min, the open circuit potential of Fe78Si9B13 amorphous ribbons is 0.639 
V and iron is 0.617 V as shown in Fig. 4(a). Iron and Fe78Si9B13 amor-
phous ribbons have similar open circuit potentials. It is possible that 
elemental iron is corroded on amorphous and iron surfaces. But, the 
corrosion current density of Fe78Si9B13 amorphous ribbons are 1.43 �
10� 4 Acm� 2, which is higher than 4.71 � 10� 5 Acm� 2 for iron as shown 
in Fig. 4(b). The high corrosion current density indicates that more iron 
atoms are dissolved and copper ions are reduced. It also means that Fe - 
based amorphous alloys have the ability to quickly remove copper ions. 
This is most likely due to the unique disordered atomic structure of 
amorphous alloys. 

3.5. Mechanism of the copper removal process 

As it was stated in the introduction, researchers have found that the 
surface mobility is very different from the bulk in amorphous matters, 
the surface diffusion rate of amorphous alloy is much higher than that of 
crystalline solid, which means an active “liquid like” layer exists on the 
surface of amorphous alloy [39]. Dynamic modulus mapping (DMM) of 
Fe78Si9B13 amorphous alloy ribbons and crystalline iron ribbons as 
shown in Fig. 5(a). Compared with iron ribbons, the surface of 
Fe78Si9B13 amorphous ribbons have active kinetic behavior due to low 
modulus distribution. At the same time, the high corrosion current 
density of amorphous alloy materials can also explain the active corro-
sion dynamic characteristics. Fig. 5(b) compare the mechanism of the 

copper ion removal process of amorphous alloy ribbons and iron rib-
bons. The Fe-based amorphous alloy ribbons were prepared by rapidly 
cooling the molten liquid alloy on a high-speed rotating copper mold. In 
this process, the disordered atomic structure of the alloy was retained. In 
particular, there are active atomic layers on the free surface of amor-
phous alloys, which are similar to liquid atoms with excellent reactivity. 
The electrons from iron atoms in the active atomic layer can be rapidly 
transferred to copper ions when the amorphous alloy ribbons were 
placed into a copper ion solution. In addition, abundant galvanic cells 
were produced due to the iron and copper, which was beneficial to the 
reaction process. However, the surface mobility of the crystalline iron 
ribbons is much weaker than the amorphous alloy due to the stable 
thermodynamic state. Consequently, the efficiency of removing copper 
ions with crystalline iron ribbons are lower than that amorphous alloy 
ribbons. 

4. Conclusions 

In summary, we demonstrated that the amorphous alloys ribbons 
exhibit highly efficient removal of copper ions from wastewater. It could 
reduce the concentration of copper ions in the solution to less than 1 
ppm, not only the metal copper is obtained from the solution, but also 
the treatment of wastewater can reach the discharge standard. This 
property is suitable for high or low concentration copper ion waste-
water. Compared with the activation energy of amorphous alloy ribbons 
and iron ribbons, the amorphous alloy could provide more active sites 
for the reaction owing to its unique surface atomic mobility, so it has low 
reaction activation energy and high corrosion current density. This work 
not only provides an efficient and low-cost solution for remove the 
copper ions from the solution, but also expands the application areas of 
Fe-based amorphous alloys. 
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