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a b s t r a c t 

Metallic glasses (MGs) have attracted considerable academic attention owing to their unique properties 

and great application prospects. Unlike other glassy materials, such as oxide glasses, MGs have limited 

glass forming-ability (GFA) that often leads to failure during new MG development. Although intensive 

studies have proposed various parameters and criteria enabling the evaluation of the GFA of MG samples, 

achieving accurate predictions of glass formation before the actual MG sample synthesis remains a great 

challenge and an open topic. In this study, we investigated the glass formation through the data-driven 

machine learning technique and trained a backpropagation neural network model based on a dataset 

assembled from thousands of ternary alloys. Applying the well-trained model, we accurately identified 

the MG and non-MG classes. More importantly, our model can effectively predict glass-formation likeli- 

hood of multicomponent alloys and locate the probable MG compositions without any prior experiment, 

thereby directing the MG design. From the model’s predictions, we discovered several new MGs in the 

ribbon form. Glass-formation likelihood reveals the correlation with the thermodynamic and topological 

parameters, which provides insights into the GFA of MGs. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Metallic glasses (MGs) have a nonequilibrium nature [1] but

do not have long-range translational symmetry in atomic arrange-

ment [2] , hence possessing various unique properties, such as high

strength, high elastic limit, and superb corrosion resistance [3,4] .

Since Duwez et al. first synthesized MGs by quenching in 1960 [5] ,

thousands of glass-formers in diverse alloy systems have been con-

stantly discovered through the rapid solidification method. How-

ever, compared with inorganic and polymeric glasses, MGs have

an extremely limited glass-forming ability (GFA, i.e. the ability of

a material to transform into a glassy state [6] ), which often in-

curs the development failure of new MGs. To design MGs in a

reasonable, reliable and reproducible way, it is essential to under-

stand the fundamental physics of glass formation from supercooled

liquids. Thermodynamically, the small driving force of crystalliza-

tion favoring MG formation requires small enthalpy and large en-
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ropy of fusion. These requirements can be achieved by increas-

ng the number of components and creating dense atomic pack-

ng by introducing a large atomic size difference [7] , in consis-

ent with Greer’s confusion principle [8] , Hume-Rothery’s criterion

9] and Inoue’s criteria [10] . The near deep eutectic compositions

romote MG formation because the decreased melting tempera-

ure stabilizes the disordered liquid state, and the competition be-

ween multiple crystalline phases and the disordered liquid phase

uppresses the nucleation [6] . Furthermore, MG formation is ki-

etically preferred as the nucleation rate is suppressed by increas-

ng the liquid–crystal interface energy and reducing the long-range

tomic diffusion, which show the association with the high ther-

odynamic interface penalty [11] , the high fragility of liquids [12–

5] , and the dense atomic packing of the multiple components

10] . From the structural perspective, the enhanced atomic size

ismatch induces a high internal strain [16–18] , leading to lattice

istortion and instability [7,9] . The presence of short-to-medium

ange orders, such as hidden topological orders [19] , spherical-

eriodic orders, and local translational symmetry [20] , also chemi-

ally and topologically stabilizes the disordered structures. To date,

https://doi.org/10.1016/j.actamat.2020.09.081
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2020.09.081&domain=pdf
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Table 1 

Formulae of feature candidate calculation 

Feature candidates Formulae 

Pauling’s electronegativity difference 

[29] 

�χ = 

√ ∑ n 
i =1 c i ( χi − χ) 

2 

Valence electron concentration [30] VEC = 

∑ n 
i =1 c i ( VEC ) i 

Theoretical density [49] ρ = 100 / ( 
∑ n 

i =1 W i / ρi ) 

Theoretical molar volume [50] V = 

∑ n 
i =1 c i m i / ρi 

Atomic size difference [10] δ = 

√ ∑ n 
i =1 c i ( 1 − r i / ̄r ) 

2 

Enthalpy of mixing [10,51] �H mix = 

∑ n 
i =1 , j � = i �i j c i c j 

Configurational entropy [52] �S c = −R 
∑ n 

i =1 c i ln c i 

Mismatch entropy [28,49] 
S σ = k B { 1 . 5( ζ 2 − 1 ) y 1 + 1 . 5 ( ζ − 1 ) 

2 
y 2 

−[ 0 . 5( ζ − 1 )( ζ − 3 ) + ln ζ ]( 1 − y 3 ) } 
Modulus [50,53,54] M hi = 

∑ n 
i =1 c i M i V i /V (upper bound) 

M lo = V/ ( 
∑ n 

i =1 c i W i / M i ) (lower bound) 

Fragility [55] m = 12( K/G + 0 . 67 ) 

Glass transition temperature [50] T g = 2 . 5 E + C 1 
Melting temperature [50] T l = V E / C 2 R 

Onset crystallization temperature [50] T x = C 3 K + C 4 
T rg parameter [22] T rg = T g / T l 
�T x parameter [23] �T x = T x − T g 
α parameter [56] α = T x / T l 
β parameter [56] β = ( T x / T g ) + ( T g / T l ) 

γ parameter [24] γ = T x / ( T g + T l ) 

γ m parameter [25] γm = ( 2 T x − T g ) / T l 
ξ parameter [57] ξ = T g / T l + �T x / T x 
ω parameter [58] ω = T g / T x − 2 T g / ( T g + T l ) 
dentifying the key physical factor for vitrification is still an open

opic under intensifying debate. 

On the basis of the physical understanding of the glass for-

ation of MGs, extensive research has made great effort s f or the

easible parameters or criteria of evaluating and predicting the

FA to satiate the burning desire for discovering new MGs. These

arameters and criteria can be broadly grouped into the follow-

ng categories [21] , which depend on (i) characteristic transfor-

ation temperatures, such as reduced glass transition tempera-

ure ( T rg = T g / T l , where T g is glass transition temperature and

 l is liquidus temperature) [22] , �T x parameter ( �T x = T x − T g ,

here T x is onset crystallization temperature) [23] , γ parameter

 γ = T x /( T g + T l )] [24] , γ m 

parameter [ γ m 

= (2 T x – T g / T l ] [25] , (ii)

hermodynamic quantities, such as the enthalpy of mixing ( �H mix )

10] , the enthalpy of formation of solid solution ( �H ss ) [26] , (iii)

opological and structural features, such as configurational entropy

 �S c ) [27] , mismatch entropy ( S σ ) [28] , atomic size difference ( δ)

10] , Pauling’s electronegativity difference ( �χ ) [29] and valence

lectron concentration ( VEC ) [30] , and (iv) kinetic properties, such

s fragility ( m ) [31,32] . Although these parameters and criteria re-

eal the interpretation of glass formation from distinct points of

iew, they are not universally valid for the entire MG family. More-

ver, most of these parameters rely on experimental measurements

n actual MG samples and consequently lack the predictability of

lass formation. Evidently, such parameters are inconvenient to

uide MG design. When we develop new MGs on the basis of

hese parameters and criteria, large numbers of trial-and-error ex-

eriments are necessary, which are time consuming and resource-

ntensive [33] . 

A novel paradigm based on machine learning (ML) techniques

s emerging for materials science; it shows potential in glass-

ormation prediction and the acceleration of discovering new MGs

33,34] . Such a data-driven approach enables rapid estimations

ased purely on past data without any additional experimentations

nd simulations [35] . Accordingly, we can get rid of the conven-

ional trial-and-error experiments. Applying a variety of ML algo-

ithms, such as neural network [36–41] , support vector machine

42] , random forest [43–45] , decision trees [46] , support vector re-

ression [47] and Gaussian process [47] , the ML models realize the

ssessment of R c [36,39] , d max [44,47] , T g [36,40] , T rg [37] and �T x 
38] and propose new predictive criteria for binary [42] , ternary

43] and multicomponent alloys [41] . 

In this study, we intend to investigate the glass formation of

Gs through training a backpropagation neural network (BPNN)

odel based on a dataset assembled from thousands of ternary

lloys. Through the ingenious approximations of features that we

elect, we tackle the problem that several features, such as �T x ,

re unobtainable without prior experiments on actual MG samples,

nd thus realize taking the thermodynamic, kinetic, and structural

spects into considerations within one predictive model, which has

ot been achieved before. We aim to identify MG and non-MG

lasses accurately by applying our well-trained model. More im-

ortantly, the model can be used to predict the glass formation of

Gs and locate the probable MG compositions without any prior

ynthesis and measurement, thereby effectively guiding the MG

esign. 

. Methods 

.1. Data collection and processing 

The data were collected from the handbook “Phase diagrams of

on-equilibrium alloys” [48] . The dataset consists of 3,227 com-

ositions in 79 ternary alloy systems, containing 31 metals and 2

etalloids. A total of 1,850 MG compositions, 908 crystalline com-

ositions, and 469 mixed ones exist in the dataset, accounting for
7%, 28% and 15%, respectively. To train the model, we catego-

ized the data on the basis of their structures, forming a MG class

nd a non-MG class that combines the crystalline data with the

ixed data. The imbalanced data (i.e. the MG class vs. the non-

G class is 57% to 43%) are likely to degrade the training perfor-

ance of the classifier systematically. Therefore, we performed a

andom undersampling test with the synthetic training data. The

esult shows no discrepancy of performance between the resam-

led and raw datasets ( Appendix A ); thus, we accepted this slightly

kewed dataset to avert the risk of overfitting or information loss

rom resampling. The dataset was randomly divided into three sub-

ets, including a training dataset (accounting for 70%), a validation

ataset (15%) and a test dataset (15%). 

.2. Feature calculation and selection 

According to the extensive studies on the GFA of MGs [10,22–

5,28–30,49–58] , we initially selected 23 parameters as feature

andidates, which were either physical quantities or artificial pa-

ameters proved relevant to GFA. To achieve the predictability of

lass formation, it is of crucial importance that the acquirement of

eatures must not rely on any sample synthesis and measurement.

herefore, every feature that we selected was obtained by theoret-

cal calculation or approximation, as listed in Table 1 . 

In order to reduce overfitting and prevent the curse of dimen-

ionality, we applied a two-step filter method to remove redundant

nd low-variance features. First, we analyzed the linear correlation

mong all feature candidates by calculating the Pearson’s correla-

ion coefficient ( ρA , B ) of each pair of features ( A,B ), which is given

y the equation: ρA,B = E[ ( A − μA )( B − μB ) ] / ( σA σB ) , where E[ • ] is

he expectation; μA and μB are the means of A and B , respectively;

nd σ A and σ B are the standard deviations. ρA , B ranges from −1

o 1; its value is equal to 1, −1 and 0, denoting perfectly positive,

egative and no correlation, respectively. The redundant features

ith strong correlation ( ρA , B < −0.7 or > 0.7) were highlighted

n Fig. 1 , on the basis of the correlation matrix. We observed that

here are four strong correlated parameter pairs, i.e. �T x – ω, T l –

, T x – V and K – V , and two strong correlated parameter groups,

.e. ( T g , E, G, K, T l , T x ) and ( T rg , ω, γ , α, β , γ m 

, ξ ). It is necessary
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Fig. 1. Correlation matrices with heatmaps. Due to the reflectional symmetry along the main diagonal, half of the bits in the matrices are not presented. The lower matrix 

displays the correlation coefficient of all feature candidates, while the upper one shows the results after the two-step feature filtration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Coefficient of variance of feature candidates. 

c  

t  

i  

t  
to select only one and rule out other parameters within the same

pair/group for ML model training. 

Second, the features were filtered on the basis of their

dispersion. We calculated the coefficient of variation c v 
( c v = σ A / | μA | × 100%), as shown in Fig. 2 , which is a dimen-

sionless number measuring the relative deviation from the mean

μA . If c v equals 0, then the feature is invariable. A qualified feature

for ML model training should have a sufficiently high c v , which

indicates that the feature is widely distributed over a relatively

large range, thereby characterizing different classes. Consequently,

we deleted the low-variance features with c v < 30% and se-

lected the features with the highest c v from the strong correlated

pairs/groups. In other words, we removed T g , E, G, T l , T x , T rg , ω, γ ,

α, β , ξ , and V . 

After applying the two-step filter method, we finally selected

11 features for our ML model training, i.e. Pauling’s electronega-

tivity difference ( �χ ), atomic size difference ( δ), theoretical den-

sity ( ρ), parameter �T x , parameter γ m 

, fragility ( m ), enthalpy of

mixing ( �H mix ), mismatch entropy ( S σ ), configurational entropy

( �S c ), bulk modulus ( K ), and valence electron concentration ( VEC ).

These features are the descriptors of alloys from the perspective of

thermodynamics, kinetics, and structures. They can be transformed

into a feature vector, having a one-to-one correspondence to the

alloy composition and class label (i.e. MG or non-MG). 

2.3. Implementation of BPNN model 

We employed an artificial neural network model with back-

propagation learning algorithm [59] , as illustrated in Fig. 3 , which

included an input layer receiving the features, a hidden layer

with 22 neurons, and an output layer producing the results. The

number of hidden neurons was determined through a 10-fold
ross-validation technique, as discussed in Appendix B . During

he feedforward computation, the hidden neurons processed the

nformation from the input layer through a hyperbolic tangent

ransfer function f (h ) = 2 / [ 1 + exp ( −2 h ) ] − 1 , where h is a vector
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Fig. 3. Schematic of the BPNN model. The messages pass between the neurons in different layers in a one-way method through the adjustable weights and biases. The error 

between the output and the target class propagates backward to update the weights and biases thereby minimizing the global error and optimizing the model. 
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c  
ith the expression h = w 1 x + b 1 , w 1 is the weight matrix, x is

he input vector, and b 1 is the bias vector. Similarly, the output

euron received the messages transmitted from the hidden layer

nd generated the output y , as expressed by y = w 2 h + b 2 . In

he classifier, y was rounded up to 1 or 0, corresponding to MG

r non-MG class. We adopted the mean squared normalized

rror function to estimate the training error between y and the

upervisory target t . The training error was backward propa-

ated for updating parameters w 1 , w 2 , b 1 , and b 2 according to

he Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. When 

he error converged to the minimum (actually oscillated around

he minimum) [60] , the iterative learning was completed. As

 result, we obtained a well-trained BPNN model. The model

as trained on the basis of MATLAB software. The dataset and

nput files necessary for reproduction are available on GitHub

 https://github.com/xdliu-yahya/-BPNN _ Glass _ Formation ). 

.4. Sample preparation and structure characterization 

We used raw materials with purity > 99.9% in wt.% to prepare

ngots by arc-melting under a Ti-gathered Ar atmosphere. Subse-

uently, the ingots were remelted through induction melting in a

uartz tube under Ar atmosphere. The melts were ejected onto

 single Cu roller with a surface speed of approximately 30 m/s

o fabricate ribbons. The as-spun ribbons were approximately 3–5

m in width and 30–50 μm in thickness. Thereafter, the ribbon

amples were characterized by X-ray diffraction (XRD) by using

igaku MiniFlex 600 with Cu K α radiation at a scan rate of 4 °/min.

he compositions were determined using an energy dispersive X-

ay (EDX) spectrometer attached to an FEI Quanta 450FEG scanning

lectron microscope instrument. 

. Results 

.1. Performance of BPNN model 

Fig. 4 a shows the confusion matrix of our well-trained BPNN

odel. On the basis of the predicted and actual classes, all data
an be categorized as true positive (TP), true negative (TN), false

ositive (FP) and false negative (FN), with the number and percent-

ge listed in Fig. 4 a. To comprehensively assess the performance of

ur BPNN model, we analyzed a series of model evaluation metrics.

verall, the BPNN model can achieve correct predictions in 82.1%

f cases. The accuracy (ACC) of 82.1% is acceptable, because an ex-

remely high ACC may result from overfitting and insufficient test

ata. As shown in Fig. 4 b, the learning curves of the model with-

ut high variance verify our model not overfitted. Fig. 4 c presents

hat the average and standard deviation of ACC slightly changes

rom 78.9 ±3.3% to 77.8 ±1.2%, as the ratio of test to training set

ize grows. It is reasonable that we applied the ratio of ~0.18 (15%

f data for test and others for training) thereby mediating the con-

ict of high deviation and ACC loss. 

Furthermore, both precision and recall reveal the excellent va-

idity of predicting a specific class by applying our model. The pre-

ision of the MG class (i.e. PPV = 81.6%) indicates that up to 81.6%

f predictions on the MG class are correct, while the recall of the

G class (i.e. TPR = 88.8%) represents that our model can success-

ully identify 88.8% of actual MG compositions and miss only 11.2%.

he capability of identifying the non-MG class is also important in

ur study, in which the precision (NPV) and recall (TNR) of the

on-MG class are 82.9% and 73.1%, respectively. Precision and re-

all are usually two conflicting metrics, which means a model with

mproving precision often reduces recall and vice versa, as demon-

trated in Fig. 4 d. Evidently, our BPNN model at the threshold of

0.6 (indicated by arrows) exhibits the optimum balance between

recision and recall for the MG and non-MG classes due to the

igh F 1 score (where F 1 is the harmonic mean of precision and

ecall, as shown in Fig. 4 e). It is worth emphasizing that we sep-

rately plotted the precision–recall curves of the training and test

ata, because the test data were not included in the training stage

nd able to verify the good generalization of our model. The results

onvincingly demonstrate that our BPNN model is extraordinarily

obust to predict the glass formation of MGs. 

We also analyzed the receiver operating characteristic (ROC)

urves to judge the classification ability of our model. As shown in

https://github.com/xdliu-yahya/-BPNN_Glass_Formation
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Fig. 4. Evaluation metrics of the BPNN model. (a) confusion matrix; (b) learning curves; (c) ACC variation with the ratio of test to training set size; (c) precision–recall 

curves; (f) F 1 score vs. threshold; (e) ROC curves; (f) Youden’s index vs. threshold. 
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Fig. 6. XRD patterns of ribbon samples. (a) Ti-Fe-Cu system; (b) Ti-Ni-Zr system. 
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ig. 4 f, ROC curves plot the variations in TPR and FPR with changed

hresholds. If a classifier has no classification capability, the ROC

urve will comply with the random guess line, connecting points

0,0) and (1,1) with an area under the curve (AUC) of 0.5, such

s the dummy classifier generating a baseline. For a skilled clas-

ifier, its ROC curve will bow toward the coordinate (0,1), which

enotes the perfect classifier. For comparison purposes, we trained

 logistic regression (LR) model, which is a linear classifier, equiv-

lent to one neural node in neural networks. Evidently, the better

erformance of our BPNN model demonstrates the significance of

sing such a complex model (i.e. neural network). The curves at

he threshold of ~0.6 have the optimized tradeoff of TPR and FPR

ue to the large Youden’s index (i.e. the height above the chance

ine; details are presented in Fig. 4 g). The AUC of 0.94 proves the

xcellent performance of the BPNN model in predicting glass for-

ation. Compared with the curve of the training dataset, that of

he test dataset does not show any deterioration, which confirms

he good generalization of our model. Therefore, we can draw the

onclusion that our BPNN model has extraordinary performance in

valuating and predicting the glass formation of MGs. 

.2. Prediction of glass-formation 

We introduced the glass-formation likelihood ( L ), defined as the

utput value obtained from the BPNN model, which represents the

onfidence of the predictions for an alloy forming glassy state [43] .

he compositions with high L are more likely to form a glassy

tate than the low- L ones under the same experimental conditions.

ig. 5 depicts four typical instances to illustrate this point. We ap-

lied our predictive model to four ternary alloy systems, i.e. Ti–

o–Zr, Fe–Co–Zr, Ti–Fe–Cu and Ti–Ni–Zr, and mapped the contours

f L to visualize the probable glassy regions. In Figs. 5 a and b, the

ightened areas overlaying the color maps are MGs, whereas the

arkened areas are not, as reported by Ren et al. [43] It is clear

hat the distribution of L matches with the experimental results in
ig. 5. Contour maps of L based on the predictions of the BPNN model. The lightened a

ata are our experimental results. (a) Ti–Co–Zr system; (b) Fe–Co–Zr system; (c) Ti–Fe–Cu
oth ternary systems. Furthermore, Ti–Co–Zr and Fe–Co–Zr are the

ew alloy systems not included in the dataset, which confirms the

emarkable predictability and generalization of our BPNN model. 

Compared with the majority of GFA parameters and criteria, our

PNN model has the advantages of predicting the GFA of alloys

head of actual sample preparation because it does not depend on

xperiments, such as the measurement of T g , T x , and T l . Therefore,

he BPNN model can guide MG design. To this end, we prepared

ome ribbons in Ti–Fe–Cu and Ti–Ni–Zr systems based on the L

aps, as shown in Figs. 5 c and d. The structures of the ribbons,

haracterized by XRD in Fig. 6 , are plotted as symbols onto the

ontour maps of L . We observed that Ti–Fe–Cu has overall poor L

ut still has some relatively high- L values in narrow regions, in-
nd darkened areas denote MGs and non-MGs reported in Ref. [43] . The scattered 

 system; (d) Ti–Ni–Zr system. 



188 X. Liu, X. Li, Q. He et al. / Acta Materialia 201 (2020) 182–190 

Fig. 7. Glass forming likelihood (filled curves) and amorphicity (scattered data). (a) 

Ti-Fe-Cu system; (b) Ti-Ni-Zr system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Accuracy losses of the models with one feature removed during training. 
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dicating the potential MG compositions. Following the guide of L ,

we succeeded in developing two MGs from such an “unexpected”

and “bad” glass formation alloys, which had not been reported be-

fore. Different from the easy task of fabricating MGs in the alloys

with broad high- L areas, such as Ti–Co–Zr and Fe–Co–Zr, what we

accomplished in Ti–Fe–Cu was a very difficult task, which demon-

strates the outstanding ability to guide MG design. Another exam-

ple that we chose was the Ti–Ni–Zr system. It provided the model

some MG data for training, as presented by the lightened areas

in Fig. 5 d, and hence the highest- L regions matched these areas.

We noticed that there were also some high- L compositions outside

of these highest- L areas. Therefore, we intended to verify whether

MGs can form in these “neglected” areas. Evidently, we discovered

three full and several partial glassy structures in relatively large L

regions, in line with the model’s predictions. Here, we introduced

amorphicity ( f am 

), which is the fraction of non-crystalline struc-

tures [ f am 

= (1 – f cry ) × 100%, where f cry is the crystallinity, namely

the fraction of crystalline state]. We found that the variation in f am 

is roughly consistent with L , as shown in Fig. 7 . The results prove

that the maps of L generated by our predictive BPNN model are

the competitive guide that assists in developing new MGs. How-

ever, it is necessary to emphasize that L = ~0.5 cannot be regarded

as the threshold to distinguish glasses from crystals as it works in

the prior binary classifier, since MG formation not only depends

on GFA but also relates to the processing condition. Therefore, we

conclude that there is a greater probability to fabricate MGs with
igh- L compositions than low- L ones under the same experimental

onditions. 

. Discussion 

.1. Physical understanding of L 

To understand the significances of the features to L , we trained

odels leaving each feature out one by one. And then we tracked

he ACC losses. As shown in Fig. 8 , ACCs decrease by over 7% when

χ , δ, �H mix and S σ is removed, which indicates that these fea-

ures play key roles in our model. In accord with the Inoue’s rules

10] and the Hume-Rothery’s rule [9] , the large δ leads to dense

tomic packing and increased liquid–solid interfacial energy [6] ,

ausing the reduce of free volume, the increase of viscosity of melt

nd the sluggish atomic diffusivity. For alloys, low �χ promotes

he formation of solid solutions [61] , whereas high �χ suggests

elatively strong atomic interactions, i.e. the formation of clusters.

uch atomic interactions can restrain the solubility and diffusion of

hese elements in the competing crystalline phases and thus stabi-

ize liquid phases during cooling [29,61,62] . Topologically, large S σ
ndicates an extreme mismatch in atomic sizes that induces large

ntrinsic residual strains and results in lattice instability favoring

lass formation [16–18] . 

.2. Generalization to multicomponent alloys 

Although the whole data used for training the model were col-

ected from the alloys containing three components ( n ≤ 3) at

ost, the well-learned model did not limit the number of compo-

ents in physics. To generalize our model to multicomponent alloys

 n > 3), we collected 386 multicomponent compositions from lit-

rature (Supplementary Table 1 presents the composition list) and

hen verified the model predictions with these data. As shown in

ig. 9 , the histograms depict the probability density distributions

f L of MG and non-MG alloys. Clearly, L exhibits the Gaussian dis-

ribution with the average value of 0.51 for non-MGs and 0.87 for

Gs, indicating their difference in GFA can be distinguished by our

odel. The accuracy of predictions is 83% due to 17% of area over-

apped in Fig. 9 . As a consequence, we successfully generalized our

PNN model to acquire predictions of L of multicomponent alloys. 

.3. Prediction error 

The prediction error of our BPNN model may result from the

raining data, feature obtainment, and model tradeoff. First, the
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Fig. 9. Probability density distributions of L of MG and non-MG multicomponent 

alloys. 
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Fig. B.1. Validation and training error variation with the number of hidden neurons. 
erformance of a ML model strongly relies on the quantity and

uality of data; therefore, collecting more typical data for train-

ng via data augmentation, data selection, and combination with

igh throughput observations [43] is an effective approach that

urther improves the model performance and generalization capa-

ility. Second, in order to achieve the predictability of glass for-

ation and eliminate the dependence on the measurement of fea-

ures, we applied the theoretical calculation and the mixing rule to

stimate the features, which introduced a calculation error into the

PNN model. Instead of estimations with explicit expressions, we

an expect that ML directly obtain the accurate values of features,

uch as moduli and characteristic temperatures [36–38,47,63,64] .

hird, several inevitable dilemmas occur during model parameter

etermination, such as the tradeoff between model parsimony and

erformance accuracy, between precision and recall, and between

PR and FPR. The compromise will reduce overfitting and improve

he generalization of the model. 

. Conclusion 

In conclusion, we developed a ML model based on the BPNN

lgorithm and the data of ternary alloys in this study. Our BPNN

odel reveals extraordinary performance in identifying the MG

nd non-MG classes. To validate and generalize the BPNN model,

e compared the predictions of the BPNN model with masses of

xperimental results reported in literature and conducted in this

ork. The results prove that our predictive model can evaluate and

redict the glass-formation likelihood of alloys without any prior

xperiment. Therefore, it can be used for guiding MG design. From

he predictions of the probable MG formation regions given by our

odel, we successfully discovered several new MG compositions in

aried alloy systems. 
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ppendix A. Undersampling test 

There are 1,850 data of MG class and 1,377 data of non-MG

lass in the original training dataset. To create a balanced dataset,

e randomly selected 1,377 samples from the MG class and com-

ined with the whole of non-MG class. By comparison, 2,754

ata were randomly extracted to form the imbalanced dataset as

kewed as the original dataset. After training ML models by using

hese two datasets for 30 times respectively, we applied the mean

quared error (MSE) to evaluate the performance of the ML mod-

ls. The averaged MSE is 0.16 ± 0.01 for using the balanced data

nd 0.15 ± 0.01 for employing the biased one. Both have a low

SE that shows a good performance. Furthermore, there is nearly

o difference between them, and the skewed data even perform a

ittle better. Therefore, it demonstrates that a slightly imbalanced

ataset in our training is acceptable, having little impact on the

L model performance. 

ppendix B. Determination of number of hidden neurons 

To determine the number of hidden neurons, we trained a

eries of ML models with the varying numbers from 1 to 100,

hrough the 10-fold cross-validation method. Afterwards, we cal-

ulated the training errors and validation errors of these models,

s shown in Fig. B.1 . The training error gradually decreases with

he increasing number of hidden neurons and then fluctuates be-

ween 0.13 to 0.15, which means the performance of ML model

nitially improves and subsequently remains nearly stable. Simi-

ar trend can be seen in the validation error, revealing a simi-

ar generalization accuracy for the unseen instances. Though there

s no evident overfitting effect (i.e. training error reducing but

alidation error going up) in Fig. B.1 , we decide to use a small

umber of hidden neurons to balance the model performance

nd complexity. Ultimately, we applied 22 hidden neurons in our

odel. 
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